
LEARNING OPTIMAL TRAFFIC ROUTING BEHAVIORS USING MARKOVIAN
FRAMEWORK IN MICROSCOPIC SIMULATION

Theophile Cabannes
University of California, Berkeley
LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
652 Sutardja Dai Hall, Berkeley, CA 94720-1710
email: theophile@berkeley.edu

Jiayi Li
University of California, Berkeley
652 Sutardja Dai Hall, Berkeley, CA 94720-1710
email: lijiayi9712@berkeley.edu

Fangyu Wu
University of California, Berkeley
652 Sutardja Dai Hall, Berkeley, CA 94720-1710
email: fangyuwu@berkeley.edu

Harry Dong
University of California, Berkeley
652 Sutardja Dai Hall, Berkeley, CA 94720-1710
email: hdong920@berkeley.edu

Alexandre M.Bayen
University of California, Berkeley
Institute of Transportation Studies
109 McLaughlin Hall, Berkeley CA 94720-1720
email: bayen@berkeley.edu

Submission Date: July 31, 2019

Cabannes et al. 2

ABSTRACT
This article applies the existing Markovian traffic assignment framework to novel traffic control
strategies. In the Markovian traffic assignment framework, transition matrices are used to derive
the traffic flow allocation. In contrast to the static traffic assignment, the framework only requires
flow split ratio at every intersection, bypassing the need of computing path flow allocation. Con-
sequently, compared to static traffic assignment, drivers’ routing behaviors can be modeled with
fewer variables. As a result, it could be used to improve the efficiency of traffic management, espe-
cially in large scale applications. To begin with, the article introduces Markovian traffic assignment
and connects it to the classic static traffic assignment. Then, the framework is extended to dynamic
traffic assignment using microscopic traffic simulator Simulation of Urban Mobility (SUMO). In
a case study, the framework is applied to a standard benchmark network, where optimal routing
behaviors are independently learned through grid search, random search, and evolution strategies,
under three different reward functions (network outflow, total vehicle hours of travel, and average
marginal regret). The case study shows that the this novel traffic control strategy is promising, as
Markov chain theory supports the ability to scale up to larger networks.

Keywords: Network equilibrium modeling, Routing behavior, Nash games, Markov chains

Cabannes et al. 3

INTRODUCTION
Motivations
Reducing traffic congestion.
In many parts of the world, congestion has swelled to be a difficult dilemma (1). In 2018, INRIX
calculated an annual loss of around $305 billion in the U.S. due to the direct and indirect impacts
of congestion on productivity (2). Left unattended, congestion can amplify the complications
that currently come along with it, which include but are not limited to wasted time, excessive
noise, unnecessary fuel consumption, and increased greenhouse gas emissions (3). Researchers
and practitioners have tried many ways to reduce fuel consumption and greenhouse gas emissions
by improving the quality of vehicles themselves, but this only makes congestion more bearable
without solving the problem itself (3).

The need of models to perform traffic estimation using new data sources.
With the rise of smart phones and cloud computing, traditional traffic management has been out-
paced by new mobility services, such as transportation network companies and navigational apps
(4). Consequently, current research aims to improve traffic models by leveraging new mobility ser-
vices, such as real-time, GPS-based, point-speed data from mobile devices (5). Even so, the data
sources required for current traffic models are challenging to collect, as current traffic models need
trajectory data, yet traffic data are mainly available as cross-sectional data. Therefore, this article
focuses on developing Markov chain-based models to utilize link flow data more effectively.

Opportunities to improve traffic flow control through network connectivity.
Real-time traffic predictions can help reduce congestion by improving traffic control strategies
(6). Additionally, traffic control systems could benefit from the use of navigational apps and au-
tonomous vehicles (7). However, controlling every vehicle can be expensive and may lead to eth-
ical issues. Therefore, this article considers network traffic control strategies based on controlling
vehicle split ratios at every intersection. Such a decentralized structure allows for massive par-
allelization: at every intersection, traffic control can be applied through infrastructure-to-vehicle
communications independent of other intersections, which is a significant computational advan-
tage.

Contributions
Markov chains to model traffic assignment
In this article, Markov chains are used to model network traffic equilibrium flow. This is claimed to
be similar to Google’s use of Markov chains to model internet congestion in (8). In the Markovian
traffic assignment framework, transition matrices are used to derive traffic flow allocations. More
specifically, for any vehicle arriving at an intersection, the transition matrix indicates its probabil-
ity to go on any downstream road segments from its current road segment. Using the law of large
numbers, each element of the transition matrix can be seen as the flow split ratio of every inter-
section. Therefore, Markov chains can extend the static traffic assignment: the Markovian traffic
assignment framework.

Key contributions
The key contributions of the article include:

• Framing the static traffic assignment into an equivalent Markov chain framework. The clas-

Cabannes et al. 4

sic static traffic assignment (STA) is reframed into an optimization problem on a transi-
tion matrix instead of path flows. At each intersection, incoming flows are split among
the downstream roads according to the split ratios given by the transition matrix of the
network. This reformulation can be seen as an Eulerian formulation of a Lagrangian
problem using fluid mechanics concepts (9).

• Extending the Markov chain to the dynamic traffic assignment. The Markovian traffic frame-
work is extended to the dynamic traffic assignment using the microscopic simulator
SUMO. A benchmark network composed of five links connected by two branches and
one merge is set up in SUMO. Every vehicle path is generated by following the proba-
bilities given by the transition matrix of the Markovian framework.

• Learning optimal routing behavior with the dynamic Markovian framework. We demon-
strate how to optimize the traffic flow allocation under the Markovian framework in a case
study. To begin, three reward functions – network outflow, total vehicle hours of travel,
and average marginal regret – are designed to measure the effectiveness of traffic flow
allocations. Next, grid search, random search, and evolution strategies are performed on
the transition matrix to optimize routing behaviors based on the simulation data collected
from SUMO. The results show that those three methods are comparable in the case study
under all three rewards.

Outline
This article first explains the classic traffic assignment (10) and introduces the Markovian static
traffic assignment in Section “Traffic Assignment Dynamics”. Second, in order to compare both
models, optimal flow allocations are defined according to the notions of user equilibrium and
social optimum in Section “Optimal Static Flow Allocation”. Next, the Markovian framework is
extended to dynamic traffic assignment with the help of SUMO to compute the flow allocations
using transition matrices in Section “Dynamic Traffic Assignment.” In Section “Learning Optimal
Flow Allocation”, we search the decision space of constructed dynamic traffic assignment scenario
through grid search, random search, and evolution strategies.

TRAFFIC ASSIGNMENT DYNAMICS
This section introduces the static traffic assignment framework (10) and an equivalent Markovian
framework (6). In the Markovian framework, computation of the optimal link flow allocation is
done using transition matrices. This bypasses the need of calculating path flows in the static traffic
assignment which can be computationally expensive.

Notations
This section defines a network, or graph, G which is composed of nodes, or vertices, N joined by
links, or edges, L . The network is assumed to be strongly connected, and the set of paths without
cycles is defined as P . For each path p, the flow on the path is denoted as hp. For each link l, the
flow on the link is denoted as fl . Given a demand matrix D, which indicates the flows that enter
and leave the network at each node, we denote the set of feasible path flow allocations as HD. The
following notations and definitions are derived from (10).

Definition 3.1 (Network, paths, and demand). Given a finite strongly connected directed graph G
with nodes set N and links set L ⊂N ×N , i.e. G = (N ,L), for each origin o ∈N and
destination d ∈N :

Cabannes et al. 5

• Let Pod be the set of feasible paths without cycles from o to d.
• Let dod ≥ 0 be the total number of vehicles that make the journey o→ d, per unit of time.

We denote the demand matrix D = (dod)o,d∈N .

For all of the following definitions and sections, G is assumed to be given and strongly
connected. Therefore, for the sake of redundancy, this fact will not be restated every time.

Remark 3.1 (Tails and heads of links). For any link l ∈L ⊂N ×N , because L ⊂N ×N ,
there exists unique t,h ∈N such that l = (t,h). We refer to t as the tail of l, and to h as the head
of l.

We will use the diamond network as a benchmark network to illustrate definitions and
notations. Assume that node A is the origin, node D is the destination, and let demand be dAD.
This network is shown in Figure 1.

A

B

D

C

AB

AC

BC

BD

CD

DA

FIGURE 1: Benchmark network to illustrate definitions and notations.

Using the network from Figure 1, we have:

N = {A, B, C, D}
L = {DA, AB, AC, BC, BD, CD} where DA = (D,A), AB = . . .

PAD = {ABD, ABCD, ACD} where ABD = (AB,BD), ABCD = . . .

D =


0 0 0 dAD
0 0 0 0
0 0 0 0
0 0 0 0



Definition 3.2 (Path flows, feasible path flow allocation). For each path p ∈P =
⋃

o,d∈N
Pod:

• let hp be the path flow of path p: the number of vehicles using path p per unit of time.
We denote the path flow vector h = (hp)p∈P .

Given a demand matrix D ∈ R|N |×|N |+ :

• let HD =

{
h, p ∈P : hp ∈ R+, o,d ∈N : ∑

p∈Pod

hp = dod

}
be the set of feasible path

flow allocations.

Cabannes et al. 6

In Figure 1, a path flow allocation h = (hp)p∈P is feasible if and only if: hABD +hABCD +
hACD = dAD.

Definition 3.3 (Link flows).
• For each link l ∈L , let fl be the link flow of l: the number of vehicles using link l per

unit of time.
• We denote the link flow vector f = (fl)l∈L .

Static traffic assignment notation
In this section, we define the static traffic assignment assumption that will be relaxed in the section
“Dynamic traffic assignment using SUMO”. Following definitions from (10), link travel times tl
and path travel times cp are defined. Assuming stationary conditions (which are reasonable for
periods of time where demand is quasi-static), the link flow allocation f can be derived from the
path flow allocation hp using the incidence matrix ∆: f = ∆h. Similarly, cp = ∆>t.

Definition 3.4 (Incidence matrix).

• For each path p ∈P and link l ∈L , we define δl,p =

{
1 if l ∈ p
0 otherwise

.

• We denote δp = (δl,p)l∈L the indicator vector of the links included in path p.
• We denote ∆ = (δl,p)l∈L ,p∈P the incidence matrix.

On the benchmark network of Figure 1, considering P = PAD, we have:

∆ =


0 0 0
1 1 0
0 0 1
0 1 0
1 0 0
0 1 1


Definition 3.5 (Travel time).

• For each link l ∈L , let tl be the travel time on link l.
• We denote the link travel time vector t = (tl)l∈L .
• For each path p ∈P , we define cp as the travel time on path p as the sum of the travel

times on each link that is included in path p, i.e. cp = δ
ᵀ
p · t.

• We denote the path travel time vector c = (cp)p∈P .

Definition 3.6 (Static model, feasible link flow allocation). Static equilibrium conditions are as-
sumed. Therefore, for any path p, hp remains constant over time and f = ∆h.

Given a demand matrix D ∈ R|N |×|N |+ , let FD = {∆h, h ∈HD} be the set of feasible link
flow allocations.

Definition 3.7 (Separability of travel time, travel time function). For each l ∈ L , tl is (only) a
function of fl: tl(fl). We assume that for each l ∈L , tl is a strictly increasing function, and is
positive for fl ≥ 0. We denote t(f) = (tl(fl))l∈L .

For every link flow allocation f∈FD, the travel time of each path p∈P is cp(f) = δ
ᵀ
p ·t(f).

Cabannes et al. 7

Markovian framework for static traffic assignment
In this section, the Markovian framework, inspired by (6, 11), is presented. First, the line graph
L(G) is defined as the graph where the roles of nodes and links in G are swapped. Next, based
on the adjacency matrix of L(G), the transition matrix P – a type of stochastic matrix (12) – gives
the transition probabilities to go from any link l to its downstream links. Equilibrium flows (in the
context of Markov chains) are then defined using the transition matrix P and the demand matrix D.

Definitions
Definition 3.8 (Line graph (13)). The line graph L(G) = (NL(G),LL(G)) is the graph formed from
swapping the roles of nodes and links in G = (N ,L). Each link in G is represented as a node in
L(G): NL(G) = L , and each pair of links (l1, l2) in G such that the head of l1 is the tail of l2 is a
link in L(G).

Remark 3.2 (Line graphs vs. dual graphs). Such a graph is called a line graph, but some articles
– such as (6) and (14) – use the term dual graph instead. Note that the definition of the dual graph
(in (6) and (14)) is not equivalent to the definition of dual graphs from a graph theory point of
view, where the faces in the original graphs are nodes in the dual graph.

Definition 3.9 (Stochastic matrix (12)). For a line graph L(G), S ∈ R|L |×|L | is defined as a
stochastic matrix if and only if:

∀i, j ∈L , si, j ≥ 0
S1 = 1
∀i, j ∈L , si, j 6= 0 =⇒ (i, j) ∈LL(G)

Definition 3.10 (Transition matrix (8)). For a line graph L(G), P ∈ R|L |×|L | is defined as a
transition matrix if and only if:

P is a stochastic matrix
∀i1, i2, l ∈L , pi1,l 6= 0 and pi2,l 6= 0 =⇒ pi1,l = pi2,l

We denote T as the set of transition matrices.

Remark 3.3 (Line graphs and Markov chains). The line graph of the network is used because
information about flow lies in the road segments (or links of G), not in the actual locations or
intersections (or nodes of G). With this setup, well-studied Markov chain properties can be used
(12) to observe how flow shifts from one road to the next at every timestep.

While stochastic matrices allow any probability distribution from one link to the next, tran-
sition matrices assume that if two links l1, l2 share the same head, then the probability to go from
l1 to a downstream link l f is the same as the probability to go from l2 to the same link l f .

Remark 3.4 (Markov chain). A Markov chain is a stochastic process in which the probability of
changing to a state j from state i depends only on the fact that the current state is i (8). Markov
chain theory describes that the transition matrix can be used to compute the expected distribution
of flows ft+1 at time t + 1 from the distribution of flows ft at time t: ft+1 = P>ft (8). Therefore,
transition probabilities can also be seen as split ratios (see definition 3.13).

Cabannes et al. 8

On the benchmark network (Figure 1), we have that:

NL(G) = {DA,AB,AC,BC,BD,CD}= L

LL(G) = {(DA,AB),(DA,AC),(AB,BD),(AB,BC),(BC,CD),(AC,CD),(BD,DA),(CD,DA)}

P =


0 pAB pAC 0 0 0
0 0 0 pBC pBD 0
0 0 0 0 0 pCD
0 0 0 0 0 pCD

pDA 0 0 0 0 0
pDA 0 0 0 0 0


The line graph of the benchmark graph and the corresponding transition matrix are shown in Fig-
ure 2 where nodes are in the approximate positions of the links in the benchmark graph. In this
case, demand enters at nodes AB and AC.

AB

AC

BC

BD

CD

DA

pBC

pBD

pCD

pCD

pDApDApAC
pAB

FIGURE 2: The line graph of the benchmark network.

Static equilibrium using Markov chains
Flow movement through networks is described using previously defined line graphs and transition
matrices. Transition probabilities, or split ratios, are defined as elements of transition matrices.
Then, using the concept of flow conservation, equilibrium flow can be defined using ideas analo-
gous to limits of Markov chains. This is useful later to reframe the current static traffic assignment
framework using transition matrices.

Definition 3.11 (Transition probability). For a transition matrix P ∈ T , we define pi,l for every
link i ∈L and l ∈L as the transition probability to go from the link i to the link l.

Note that, if there is no connection between the two links (i.e. (i, l) ∈LL(G)), then pil = 0.
Because, P is a transition matrix, ∀i1, i2, l ∈L , such that pi1,l 6= 0 and pi2,l 6= 0 implies

pi1,l = pi2,l (definition), and ∃i ∈L such that pi,l 6= 0 (P1 = 1), we can uniquely define pl = pi,l
(c.f. remark 3.3).

We call pl the transition probability of the link l.

Cabannes et al. 9

Node dynamics
At a specific node n of the network G , the conservation flow inside the network tells that

the total inflow of vehicles arriving at the node n added with the demand that arrives at the node is
equal to the total outflow of vehicles departing from the node n added with the demand that exits
at the node.

This can be summarized into one equality:

Definition 3.12 (Flow conservation). Given a demand D ∈ R|N |×|N |+ , a link flow allocation f
satisfies the flow conservation if for every node n ∈N :

∑
u,(u,n)∈L

fu,n + ∑
ũ∈N

dn,ũ = ∑
v,(n,v)∈L

fn,v + ∑
ṽ∈N

dṽ,n

Property 3.1 (Flow conservation). Given a demand D ∈ R|N |×|N |+ , if a link flow allocation f is
feasible (i.e. f ∈FD) then f satisfies the flow conservation.

Proof. The proof can be done by showing that:

∑
u,(u,n)∈L

∑
v,(n,v)∈L

∑
p∈P

hpδp,(u,n)δp,(n,v) = ∑
u,(u,n)∈L

fu,n− ∑
ṽ∈N

dṽ,n

and = ∑
v,(n,v)∈L

fn,v− ∑
ũ∈N

dn,ũ

which shows that ∑
u,(u,n)∈L

fu,n + ∑
ũ∈N

dn,ũ = ∑
v,(n,v)∈L

fn,v + ∑
ṽ∈N

dṽ,n

On the benchmark network example (Figure 1), for the node B, we have:

∑
u,(u,B)∈L

∑
v,(B,v)∈L

∑
p∈P

hpδp,(u,B)δp,(B,v) = δAB,ABDδBC,ABDhABD +δAB,ABDδBD,ABDhABD

+δAB,ABCDδBC,ABCDhABCD +δAB,ABCDδBD,ABCDhABCD

+δAB,ACDδBC,ACDhACD +δAB,ACDδBD,ACDhACD

= δAB,ABDhABD +δAB,ABCDhABCD = fAB

= δBC,ABDhABD +δBC,ABCDhABCD +δBD,ABDhABD+δBD,ABCDhABCD = fBC + fBD

So this gives that fAB = fBC + fBD.

Equilibrium flow
Using the flow conservation property and transition probabilities, equilibrium flow alloca-

tions can now be defined. In fact, it can be shown that the equilibrium flow allocation is a solution
to a linear equation involving the transition matrix.

Definition 3.13 (Transition dynamics). Given a transition matrix P∈T and demand D∈R|N |×|N |+ ,
a link flow allocation f ∈ R|L | is defined as an equilibrium flow allocation if:

1. f satisfies the flow conservation (definition 3.12)

Cabannes et al. 10

2. For every node n ∈N and every link l ∈L that has tail n (∃m ∈N such that l = nm),
fl = pl fn,out , with fn,out = ∑w,(n,w)∈L fn,w

3. f≥ 0

Notation 3.1 (Set of equilibrium flow). Given a transition matrix P∈T and demand D∈R|N |×|N |+ ,
FD(P) is denoted as the set of equilibrium flows.

Notation 3.2 (Origin probability Po). Given P ∈T , we denote: Po = [Pol,n]l∈L ,n∈N ,

where Pol,n =

{
pl if l has n for tail
0 else

.

For the network described in Figure 1, we have:

Po =


0 0 0 pDA

pAB 0 0 0
pAC 0 0 0
0 pBC 0 0
0 pBD 0 0
0 0 pCD 0


Property 3.2 (Equilibrium flow). For a transition matrix P ∈T , and demand D ∈ R|N |×|N |+ , f is
an equilibrium flow if and only if:

a. f = P>f+Po(D−D>)1
b. fl ≥ 0 ∀l ∈L

Proof. Let f be an equilibrium flow, n ∈N , and l ∈L which has tail n. 2. from definition 3.13
gives that fl = pl fn,out = pl ∑v,(n,v)∈L fn,v. 1. from definition 3.13 gives that ∑v,(n,v)∈L fn,v =

∑u,(u,n)∈L fu,n +∑ũ∈N dn,ũ−∑ṽ∈N dṽ,n.
Therefore, fl = pl

(
∑u,(u,n)∈L fu,n +∑ũ∈N dn,ũ−∑ṽ∈N dṽ,n

)
. This is equivalent to the ma-

trix expression: f = P>f+Po(D−D>)1.
As an example, this equation will be applied to the benchmark network in Figure 1. The

aim is to show that the equation results in the following system of equations:

fDA = pDA (fBD + fCD−dAD)

fAB = pAB (fDA +dAD)

fAC = pAC (fDA +dAD)

fBC = pBC fAB

fBD = pBD fAB

fCD = pCD (fAC + fBC)

Cabannes et al. 11

Using f = P>f+Po(D−D>)1:
fDA
fAB
fAC
fBC
fBD
fCD

=


pDA (fBD + fCD)

pAB fDA
pAC fDA
pBC fAB
pBD fAB

pCD (fAC + fBC)

+

−pDAdAD
pABdAD
pACdAD

0
0
0

=


pDA (fBD + fCD−dAD)

pAB (fDA +dAD)
pAC (fDA +dAD)

pBC fAB
pBD fAB

pCD (fAC + fBC)


Remark 3.5 (Equilibrium flow). The equilibrium flow can be seen as the stationary distribution of
the Markov chain described by P with the additional term Po(D−D>)1 that encodes the demand.
Furthermore, the stationary distribution of a Markov chain can be seen as the limit of the Markov
chain described by P as time goes to infinity (12).

Property 3.3 (Existence of an equilibrium flow). There is at least one equilibrium flow:

∀P ∈T , ∀D ∈ R|N |×|N |+ , FD(P) 6= /0

Proof. The proof can be done by sequentially:
1. Show that ∃f such that f = P>f+Po(D−D>)1.
2. Show that ∃f such that f = P>f+Po(D−D>)1 and f≥ 0

1. With the notation A = I−P> and b = Po(D−D>)1:

∃f, f = P>f+Po(D−D>)1 ⇐⇒ ∃x,Ax = b (linear equation)
⇐⇒ b ∈ Im(A)

⇐⇒ b⊥ N(A>) (because Im(A)⊕⊥N(A>))

In this case, N(A>) =N(I−P) = Span(1) because of the Perron-Frobenius theorem for irreducible
matrices (13) (basically because P1 = 1 and the graph is strongly connected). Therefore:

∃f, f = P>f+Po(D−D>)1 ⇐⇒ 1>b = 0

⇐⇒ 1>Po(D−D>)1 = 0

However, 1>Po = 1 because of the definition of Po and that P is a transition matrix. Hence,
1>Po(D−D>)1 = 0 and ∃f, f = P>f+Po(D−D>)1.

2. Let note f∗ as a flow such that f∗ = P>f∗+Po(D−D>)1. With linear algebra:

{x,Ax = b}= {x,x = f∗+ y, with ,y ∈ N(A)}= f∗+N(A)

The Perron-Frobenius theorem gives the result N(A) = N(I−P>) = Span(f0), with f0 > 0.
Therefore, {f, f = P>f+Po(D−D>)1}= {f, f = f∗+αf0,α ∈ R}.
Because f0 ≥= 0, then FD(P) = {f, f = f∗+αf0,α ∈ R}∩{f, f≥ 0} 6= /0.

Now, 1>Po(D−D>)1 = 0 can be shown on the benchmark example in Figure 1.

Cabannes et al. 12

1>Po(D−D>)1 =
[
1 1 1 1 1 1

]

−pDAdAD
pABdAD
pACdAD

0
0
0


=−pDAdAD + pABdAD + pACdAD

=−dAD +dAD since (pAB + pAC) = 1
= 0

Remark 3.6 (Uniqueness of an equilibrium flow, convergence of Markov chain). The equilibrium
flow is not unique. However, one can fix some conditions on link flows such that the equilibrium
flow will be unique and is the limit of the Markov chain described by P (c.f. remark 3.5).

On the benchmark network example (Figure 1), one possible constraint is fDA = 0. In this
case, the equilibrium will be uniquely defined (and will still satisfy f≥ 0).

Remark 3.7 (Feasibility of an equilibrium flow). An equilibrium flow (definition 3.2) may not be
a feasible flow (definition 3.6). This is due to the potential presence of cycles in the network, which
was only accounted for as a constraint such that paths should not have cycles (see Figure 3).

However, on the benchmark example, if one imposes the constraint that fDA = 0, then the
equilibrium flow will be feasible.

A

B

D

C

110

0

0

110

0

10

FIGURE 3: An equilibrium flow which is not feasible. Given a demand of dAD = 100, the flow
described in the figure is an equilibrium flow but is not a feasible flow. For any feasible flow
allocation fDA = 0.

OPTIMAL STATIC FLOW ALLOCATION
In this section, the user equilibrium and social optimum flow allocation are defined for the classic
static traffic assignment (10) and for the Markovian framework. In the case of user equilibrium,
vehicles are assumed to try to reduce their travel times as much as possible (15). Intuitively, this
means that at user equilibrium, no user can switch to a different path and reduce his or her travel

Cabannes et al. 13

time (15). In the case of the social optimum allocation, the total of all vehicles’ travel times in the
network is minimized (given a fixed demand). Both the user equilibrium and the social optimum,
for the classic static traffic assignment framework and the Markovian framework, can be computed
as minimization problems.

Static traffic assignment
First, recall the classic static traffic assignment user equilibrium and social optimum (10).

Definition 4.1 (User equilibrium). Given a traffic demand D, a path flow allocation h ∈HD is a
user equilibrium if and only if:

∀o,d ∈N , ∀p ∈Pod, hp · (cp(h)− min
q∈Pod

cq(h)) = 0

Definition 4.2 (Social optimum). Given a traffic demand D, a link flow allocation f ∈ FD is a
social optimum if and only if:

∀g ∈FD, t(f)>f≤ t(g)>g

Remark 4.1 (Wardrop’s first condition (16)). At a user equilibrium, the travel time on all used
paths between an origin-destination pair are equal and less than those which would be experienced
by a single vehicle on any unused path in the network.

Property 4.1 (Minimization problem to compute user equilibrium). Any user equilibrium is the
solution of the following a convex optimization problem (17, 18):

min
f,h ∑

l∈L

∫ fl

0
tl(s)ds

subject to ∑
p∈P

δl,php = fl ∀l ∈L

∑
p∈Pod

hp = dod ∀o,d ∈N

hp ≥ 0 ∀p ∈P

This can be written as:

max
f∈X

R(f)

Where X = FD and R(f) =−∑l∈L
∫ fl

0 tl(s)ds.

Cabannes et al. 14

Property 4.2 (Minimization problem to compute social optimum). Any user equilibrium is the
solution of the following a convex optimization problem (10):

min
f,h

t(f)>f

subject to ∑
p∈P

δl,php = fl ∀l ∈L

∑
p∈Pod

hp = dod ∀o,d ∈N

hp ≥ 0 ∀p ∈P

This can be written as:

max
f∈X

R(f)

Where X = FD and R(f) =−t(f)>f.

Optimal flow in the Markovian framework
The user equilibrium and social optimum notions can be extended to the Markovian framework.
The idea is to perform the same minimization problems but on the set of equilibrium flows given by
the transition matrix, instead of the set of feasible flow allocations. The motivation behind the new
Markovian formulation is to reduce the number of variables in the static traffic assignment. Instead
of computing every path flow (which may be expensive), the Markovian framework only requires
information on the split ratio at each intersection. Therefore, an advantage of the Markovian
framework is the ability to perform decentralized traffic control on routing choices.

Definition 4.3 (User equilibrium in Markovian framework). Given a traffic demand D, a flow
allocation f is a user equilibrium in the Markov framework if it is solution of:

min
f,P ∑

l∈L

∫ fl

0
tl(s)ds

subject to f = P>f+(POD−POD>)1
f≥ 0

P ∈T

This can be written as:

max
f∈X

R(f)

Where X =
⋃

P∈T
FD(P) and R(f) =−∑l∈L

∫ fl
0 tl(s)ds.

Definition 4.4 (Social optimum in Markovian framework). Given a traffic demand D, a link flow

Cabannes et al. 15

allocation f is a social optimum in the Markov framework if it is a solution of:

min
f,P

t(f)>f

subject to f = P>f+(POD−POD>)1
f≥ 0

P ∈T

This can be written as:

max
f∈X

R(f)

Where X =
⋃

P∈T
FD(P) and R(f) =−t(f)>f.

Remark 4.2 (Equivalence between both frameworks). The reader may expect the optimal flow
allocation of the Markovian framework to be the same as the optimal flow allocation of the classic
STA framework. However, remark 3.7 shows that the set of feasible flow allocations and the set
of equilibrium flows over every transition matrix may be different. Nevertheless, if the optimal
flow allocation in the Markovian framework is a feasible flow allocation and if the optimal flow
allocation in the STA framework is an equilibrium flow allocation, then definitions 4.1 and 4.3 and
definitions 4.2 and 4.4 will be equivalent.

DYNAMIC TRAFFIC ASSIGNMENT
In contrast to the static traffic assignment, dynamic models can simulate time-varying networks and
establish new equilibria for different departure times. Therefore, the previously defined Markovian
framework is extended to the dynamic traffic assignment using SUMO. Optimization frameworks
are developed based on the dynamic notion of the user equilibrium (minimizing average marginal
regret) and the social optimum (minimizing the total vehicles hours of travel). The benchmark
example is then set up in SUMO.

Limitations of static traffic assignment framework
Static models are defined over a relatively long period of time, and the congestion properties of
each link are described by a volume-delay function (VDF) that expresses the average link travel
time as a function of the traffic volume on that link. The travel time on each path would be the
summation of the travel time on each link in the path (as described in definition 3.7). Moreover,
the static model cannot model node dynamics, and for each link, the inflow is always equal to
the outflow in the static model (as described in definition 3.12). Such features cannot capture the
dynamics of congestion in each link: how congestion is propagated upstream through the link
and spills back to the upstream link (19). Furthermore, the static traffic assignment assumes that
the travel demand for each origin-destination pair is uniformly distributed over time (as defined
in definition 3.1) (20). Consequently, the static traffic assignment cannot model scenarios with
changing demand.

Optimization framework for dynamic traffic assignment
Advantages of dynamic traffic assignment
Recognizing that traffic networks are generally not in the steady state, extending the notion of user
equilibrium from the static traffic assignment to dynamic traffic assignment (19) requires:

Cabannes et al. 16

1. Developing efficient ways of describing time-varying network traffic conditions and
finding the path with the shortest travel time, considering that link travel times changes
over time.

2. Establishing a new equilibrium for each departure time.
Compared to static traffic assignment models, dynamic traffic assignment models are able to cap-
ture more realistic traffic flow characteristics such as queue spillback, expansion waves, and chang-
ing demand (21). In addition, the traditional travel forecasting models perform simulations on
static regional traffic flow while microscopic traffic simulation models focus on dynamic corridor-
level traffic analysis (19). The dynamic traffic assignment models’ ability to model at a wide range
of scales from the corridor-level to the regional-level fills the gap between travel forecasting mod-
els and microscopic traffic simulation models (19). This can significantly improve the accuracy of
traffic estimation.

In this article, a simulation-based dynamic traffic assignment model, using a traffic sim-
ulator, reproduces the flow dynamics in urban road traffic systems and collects simulation data
for optimization (22). A microscopic and open-source simulator SUMO (23) simulates the traffic
flow propagation and spatial-temporal interaction. SUMO is able to handle easy query and traffic
control with Python API traci.

User equilibrium and social optimum extensions in the dynamic traffic assignment
The Markovian framework can be extended using SUMO. First, given a transition matrix, the set
of equilibrium flows FD(P) can now be computed.

Definition 5.1 (Flow allocation using SUMO). Using SUMO, given a transition matrix P∈T and
demand D∈R|N |×|N |+ , we denote F̃D(P) as the set of corresponding steady-state flow allocations
that SUMO computes with P and D given to the simulator.

Remark 5.1 (Steady-state flow allocation). Due to the stochastic nature of the simulation process,
it generally takes some steps for the flow allocation to achieve a steady state given a fixed transition
matrix which encodes the nodes’ split ratios. As demonstrated in Figure 5, as the simulation
evolves, it takes a certain amount of time steps for the reward distributions (and therefore the flow
allocations) to stabilize.

Then, using F̃D(P), definitions 4.3 and 4.4 can be extended to the dynamic case.

Definition 5.2 (Social optimum in Markovian dynamic framework). Given a traffic demand D, a
transition matrix P defines a social optimum in the Markov dynamic framework if it is solution of:

max
f,P

R(f)

subject to f ∈ F̃D(P)

R(f) =−t(f)>f
P ∈T

Where t(f)>f describes the total vehicle hour travelled in the network.

Definition 5.3 (User equilibrium in Markovian dynamic framework). Given a traffic demand D, a
transition matrix P defines a user equilibrium in the Markov dynamic framework if it is a solution

Cabannes et al. 17

of:

max
f,P

R(f)

subject to f ∈ F̃D(P)

R(f) =− max
x∈FD

t(f)>(f−x)

P ∈T

R(f) = maxx∈FD t(f)>(f−x) expresses the average marginal regret of vehicles in the net-
work (24). It has been shown that minimizing maxx∈FD t(f)>(f−x) and minimizing ∑l∈L

∫ fl
0 tl(s)ds

are equivalent (18, 24). Furthermore, the average marginal regret can be extended to the dynamic
traffic state (25). Intuitively, the average marginal regret measures the distance from a traffic flow
allocation to a Nash equilibrium, or user equilibrium (24).

Reward functions
Based on the two previous definitions, we experimented with three reward functions:

1. Average throughput: maximizing fl at exit:

Rthru = fExit , (1)

where fExit is defined in section “SUMO Setup”.
2. Social optimum: maximizing the inverse of vehicle hours of travel (VHT), that is, the

sum of link flows weighted by average travel time of the edge divided by the sum of link
flows:

RV HT =
1

V HT
, V HT =

∑l∈L (fl +1) · tl
∑l∈L fl +1

, tl =
sl

vl +0.1vlmax
, (2)

where vl is average speed on link l and vlmax is the speed limit on link l. Note that
addition of one to flow and 0.1vlmax to speed is to prevent from division by zero and is
not present in the original theoretical definition of those terms.

3. User equilibrium: maximizing inverse of average marginal regret (24) divided by the
total demand in the network:

Rregret =
∑p∈P (hp +1)(cp−minp̃ cp̃)

∑p∈P hp +1
, cp =

sp

vp +0.1vpmax
, (3)

where vp is the average speed on path p and vpmax the speed limit on link p. Similar to
RV HT , we add one to hp and 0.1vpmax to speed for numerical stability. Furthermore, in
our case study, we approximate traffic on path ABD with traffic on path BD; traffic on
path ABCED with traffic on path BC, and traffic on path ACED with traffic on path AC.

SUMO setup
The road network in Figure 1 is simulated in SUMO (26). The goal here is to simulate the traffic
states with different split ratios and to provide data for flow allocation optimization.

Cabannes et al. 18

(a) SUMO Network Setup: A screenshot from
SUMO GUI that describes the geometry of
nodes and edges. Blue arrows are added to vi-
sualize the direction of traffic flow.

(b) Merge dynamics: A zoom out window that
details how the merge at C is designed on the
right network. Note that vehicles from the two
lanes take turns to merge in a “first come, first
served” basis.

FIGURE 4: SUMO Setup

The simulated traffic network is illustrated in Figure 4 and the simulation setup is detailed.
For source code, please refer to (27).

1. Set time step ∆t = 0.5s.
2. Generate a demand profile d using a Poisson distribution with a rate of 1 veh/s.
3. Input a transition matrix P ∈T .
4. Initialize the network with no vehicles.
5. For every time step i ∈ T :

• Generate vehicles v ∈ Vi for the time step i given the demand (where Vi is the set of all
vehicles generated at the time step i, |Vi|= d).

• For every vehicle generated:
– Create vehicle path according to transition matrix.
– Add vehicle v to the network following path pv.

LEARNING OPTIMAL FLOW ALLOCATION
In this section, we describe the three optimization methods, i.e., grid search, random search, and
evolution strategies, we used to search for optimal transition matrix under the three aforementioned
reward functions, i.e., average throughput, social optimum, and user equilibrium. As illustrated in
Figure 4, the road network has two splits at nA and nB. Therefore, we only need to optimize two
variables, pAB and pBC.

As a baseline, we start with a very simple learning algorithm grid search. Next, we solve the
same optimization problem using random search and then, a more advanced optimizer, evolution
strategies, respectively. Finally, we remark on their pros and cons and discuss how to choose
among them in practice.

Grid search
Grid search is an optimization procedure that finds an optimal solution by checking the rewards
at every point in a discretized search space and selecting the point(s) with the highest reward.
Pseudocode of this algorithm is described in Algorithm 1(28)

The results of grid search is illustrated in Figure 5. To illustrate evolution of the system
dynamics, we plot the heatmap of each reward on a meshgrid of pAB and pBC with each axis

Cabannes et al. 19

incrementing from 0 to 1 at stepsize of 0.05. Each simulation is designed to execute 1000 steps,
i.e., 500 seconds; each column of Figure 5 shows the progression of heatmaps for each reward
function throughout the simulation timestamped at 37.5 s, 87.5 s, 287.5 s, and 487.5 s.

Reward functions are evaluated in equilibrium states using data between 475 s and 500
s. The resulting optima found by grid search are marked in the last row of the figure with “?”
symbols.

The interpretation of plot of average throughput reward is straightforward because in order
to maximize the the exit flow, it’s reasonable to minimize congestion in every path. As illustrated
in Figure 4, there is a merge at C. When a vehicle is about to turn at a sharp angle, there is a speed
reduction for all vehicles in the area, which increases the path travel time. When the amount of
vehicles trying to merge at C exceeds capacity, the speed reduction would result in spillbacks in
AC or/and BC and therefore decrease the flow rate at exit. In consideration of the merge, when
pAB >= 0.6 and pBC <= 0.4, congestion is minimized and the exit flow maximized.

The plot for social optimum reward is also reasonable because in order to minimize the
weighted average flow travel time, we want to keep each p ∈P that is in use during simulation
unsaturated so the average travel time would be minimized. Likewise, we should take the speed
reduction at sharp turns into account. The turning angle from AB to BC and from BC to CE is
larger than that from AC to CE, therefore vehicles would be more likely to experience a larger the
speed reduction if taking the route of AB than that of AC. When pAB is zero, which means all cars
are taking the pEnter→A→C→E→D, the reward would be maximized. The worst scenario would be
about half percentage of incoming vehicles takes AB and most of these vehicles turn into BC at B
to merge with the other half of the vehicles taking AC at C. Such merge would cause serious spill
back that significantly elongate the path travel time, and therefore the weighted average flow travel
time.

The plot for user equilibrium reward is compatible with the characteristics of the network.
The user equilibrium achieves when no one in the network could achieve a shorter travel time if
switching to a different path. Therefore, when vehicles approximately have equal split at both A
and B, there would be queues spilling ack upstream to both BC and AB. Such congestion delay
would balance out the difference in path’s free flow travel time and creates the social equilibrium
that each user experiences the same travel time. If some paths in the network is congested while
one path is unsaturated, some vehicles could always achieve shorter travel time by switching to
the other path. If one path is under-saturated, some vehicles could always achieve shorter travel
time by switching to the other path. Note that the maximum point is slightly biased toward AB and
BD. Such bias is also an artefact of reduced road capacity at BC and CD induced by sharp turning
angles.

Random search
Random search is an optimization method that finds an optimal solution by checking the rewards
at a few random points from search space and selecting the point(s) with the highest reward. Pseu-
docode of this algorithm is described in Algorithm 2 (29).

The result is illustrated in Figure 6a. In the figure, 50 random points are sampled, among
which the best point is marked by “+” symbol. The location marked by “?” symbol is the optimal
solution found by grid search. By visually checking the graph, the solutions found by the two
methods are comparable.

Cabannes et al. 20

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Average Throughput

0

5

10

15

R
ew

ard (veh/s) at t = 37.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Social Optimum

0.00

0.02

0.04

0.06

0.08

R
ew

ard (1/s) at t = 37.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

User Equilibrium

0.0

0.2

0.4

0.6

0.8

R
ew

ard (1/s) at t = 37.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Average Throughput

0

5

10

15

R
ew

ard (veh/s) at t = 87.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00
p A

B
Social Optimum

0.00

0.02

0.04

0.06

0.08

R
ew

ard (1/s) at t = 87.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

User Equilibrium

0.0

0.2

0.4

0.6

0.8

R
ew

ard (1/s) at t = 87.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Average Throughput

0

5

10

15

R
ew

ard (veh/s) at t = 287.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Social Optimum

0.00

0.02

0.04

0.06

0.08

R
ew

ard (1/s) at t = 287.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

User Equilibrium

0.0

0.2

0.4

0.6

0.8

R
ew

ard (1/s) at t = 287.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Average Throughput

0

5

10

15

R
ew

ard (veh/s) at t = 487.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

Social Optimum

0.00

0.02

0.04

0.06

0.08

R
ew

ard (1/s) at t = 487.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00

0.20

0.40

0.60

0.80

1.00

p A
B

User Equilibrium

0.0

0.2

0.4

0.6

0.8

R
ew

ard (1/s) at t = 487.5 s

FIGURE 5: Grid Search Results: Each column corresponds to the time-varying distribution of
each reward function on the meshgrid of PAB and PBC throughout the simulation. The three columns
respectively correspond to reward functions for average outflow, inverse of vehicle hours of travel
and inverse of average marginal regret. At time 487.5s, when the network has converged to steady
state, the point that gives the highest reward is marked as ? for each reward function.

Cabannes et al. 21

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00
0.20
0.40
0.60
0.80
1.00

p A
B

Average Throughput

0

5

10

15

R
ew

ard (veh/s) at t = 487.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00
0.20
0.40
0.60
0.80
1.00

p A
B

Social Optimum

0.000

0.025

0.050

0.075
R

ew
ard (1/s) at t = 487.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00
0.20
0.40
0.60
0.80
1.00

p A
B

User Equilibrium

0.00

0.25

0.50

0.75

R
ew

ard (1/s) at t = 487.5 s

(a) Random Search: Random search graph is performed on top of the reward distribution graph at 975 time-
steps of simulation. 50 sample points (black dots) are picked to measure the reward function and the optimal
point that gives the highest reward is marked by “+” symbol. For comparison, the solution found by grid
search is marked by “?” symbol.

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00
0.20
0.40
0.60
0.80
1.00

p A
B

Average Throughput

0

5

10

15
R

ew
ard (veh/s) at t = 487.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00
0.20
0.40
0.60
0.80
1.00

p A
B

Social Optimum

0.000

0.025

0.050

0.075

R
ew

ard (1/s) at t = 487.5 s

0.0
0

0.2
0

0.4
0

0.6
0

0.8
0

1.0
0

pBC

0.00
0.20
0.40
0.60
0.80
1.00

p A
B

User Equilibrium

0.00

0.25

0.50

0.75

R
ew

ard (1/s) at t = 487.5 s

(b) Evolution Strategies: Similar to random search, based on the reward distribution at 975 time-steps of
simulation, evolution strategies first randomly pick a starting point and then start climbing uphill with gra-
dient ascent demonstrated by the black trace. The algorithm is manually terminated after 50 iterations at
location marked by “+” symbol. For comparison, the solution found by grid search is marked by “?” symbol.

FIGURE 6: Random Search and Evolution Strategies Results

Cabannes et al. 22

Evolution strategies
Evolution strategies is an optimization method that finds an optimal solution using gradient ascent,
where the gradients are estimated from Gaussian sampling in the neighbourhood of current solu-
tion. Specifically, for each iteration, a stochastic gradient is computed from rewards of a few points
normally distributed around the current solution. The gradient is then added to the current solution
to generate the new solution. Pseudocode of this algorithm is described in Algorithm 3 (30).

The results of evolution strategies for three different reward functions is illustrated in Fig-
ure 6b. For a fair comparison with the random search method, the trajectories are stopped after
50 iterations. All three trajectories, despite being occasionally distracted, are generally climbing
uphill toward higher rewards. The termination locations are marked by “+” symbol. Comparing
them with those marked by “?” symbol, the optimal points found by evolution strategies are just
as good as the ones found by grid search.

Algorithm 1: Grid Search

1 Policy θ ← (pAB, pBC);
2 Reward R(θ);
3 Search step size ∆;
4 Samples per point n;
5 Time horizon T ;
6 Warmup time τ;
7 r̂∗←−∞;
8 for pAB← 0; pAB ≤ 1;

pAB← pAB +∆ do
9 for pBC← 0; pBC ≤ 1;

i← pBC +∆ do
10 θ̄ ← (pAB, pBC);
11 for i← 0; i < n;

i← i+1 do
12 ri← 0;
13 for t← 0; t < T ;

t← t +1 do
14 Step

simulation;
15 if t > τ then
16 ri← ri +

R(θ̄);
17 end
18 end
19 end
20 r̄← 1

n ∑
n−1
i←0 ri

21 if r̄ > r̂∗ then
22 r̂∗← r̄;
23 θ̂ ∗← θ̄ ;
24 end
25 end
26 end
27 return θ̂ ∗

Algorithm 2: Random Search

1 Policy θ ← (pAB, pBC);
2 Reward R(θ);
3 Number of random samples m;
4 Samples per point n;
5 Time horizon T ;
6 Warmup time τ;
7 r̂∗←−∞;
8 for j← 0; j < m; j← j+1 do
9 θ̄ ← (pAB, pBC) where

pAB, pBC ∼U (0,1);
10 for i← 0; i < n; i← i+1 do
11 ri← 0;
12 for t← 0; t < T ;

t← t +1 do
13 Step simulation;
14 if t > τ then
15 ri← ri +R(θ̄);
16 end
17 end
18 end
19 r̄← 1

n ∑
n−1
i←0 ri

20 if r̄ > r̂∗ then
21 r̂∗← r̄;
22 θ̂ ∗← θ̄ ;
23 end
24 end
25 return θ̂ ∗

Algorithm 3: Evolution Strategies

1 Policy θ ← (pAB, pBC);
2 Reward R(θ);
3 Number of iterations m;
4 Learning rate α;
5 Noise magnitude σ ;
6 Samples per iteration n;
7 Time horizon T ;
8 Warmup time τ;
9 Initialize θ̂ ∗← (pAB, pBC) where

pAB, pBC ∼U (0,1);
10 for j← 0; j < m; j← j+1 do
11 for i← 0; i < n; i← i+1 do
12 Sample εi ∼N (0,σ I);
13 θi← θ̂ ∗+ εi;
14 Clip all θi entries to be

within [0, 1];
15 ri← 0;
16 for t← 0; t < T ;

t← t +1 do
17 Step simulation;
18 if t > τ then
19 ri← ri +R(θ̄);
20 end
21 end
22 end
23 ∇θ̂ ∗← 1

nσ ∑
n−1
i←0 riεi;

24 θ̂ ∗← θ̂ ∗+α∇θ̂ ∗;
25 end
26 return θ̂ ∗

Cabannes et al. 23

Discussion
Although grid search can be exhaustive, it does not scale well with the dimension of the problem.
This is commonly known as the “curse of dimensionality.” Compared to grid search, random
search is found to be more efficient, both theoretically and empirically (31). Compared to random
search, evolution strategies prefers samples nearby and may perform better in problems where
local reward topology is constructive to guide gradient ascent.

In practice, if the dimension of the problem is small, all of the three methods are good
choices. For large problems, random search or evolution strategies should be used instead. For
problems where it is possible to efficiently compute the exact gradient, vanilla gradient ascent
methods may be used instead. However, random search and evolution strategies can be easily
parallelized across a large cluster of nodes, which may result in finding a good solution within less
wall clock time.

CONCLUSION
This article first compares the Markovian static traffic assignment to the classic static traffic assign-
ment. The notions of user equilibrium and social optimum flow allocations are introduced for the
Markovian framework. The Markovian framework reduces the number of variables to compute in
the static traffic assignment by introducing the Markov property of the traffic system (i.e. a traveler
does not take into account her/his previous path to decide the next road to take). Then, exten-
sions of these notions to the dynamic traffic assignment using the traffic micro-simulator SUMO
are made. On a benchmark network, the simulator learns optimal routing behavior by finding op-
timal flow split ratios at every node using grid search, random search, and evolution strategies.
The results show the ability of the Markovian framework to learn optimal routing behavior using
SUMO.

The work can lead to several potential applications. First, the transition matrix frame-
work may be used to perform traffic estimation through data assimilation using regression with
cross-sectional data. Second, decentralized traffic control strategies may be developed by learning
optimal transition matrices. Third, Markov chain theory and graph theory can be used to better
understand the resiliency of the traffic network. Lastly, time-varying transition matrices in which
the optimal split ratios may be learned through reinforcement learning will be considered. Another
direction will be to consider split ratios that depend on the destinations of the vehicles, where every
possible destination has a transition matrix associated with it.

REFERENCES
[1] Teodorovic, D. and M. Janic, Chapter 8 - Transportation Demand Analysis. In Transportation

Engineering (D. Teodorovic and M. Janic, eds.), Butterworth-Heinemann, 2017, pp. 495 –
568.

[2] INRIX Global Traffic Scorecard, INRIX Research, 2018.
[3] Barth, M. and K. Boriboonsomsin, Traffic congestion and greenhouse gases, 2009.
[4] Cabannes, T., M. A. Sangiovanni Vincentelli, A. Sundt, H. Signargout, E. Porter, V. Fighiera,

J. Ugirumurera, and A. M. Bayen, The impact of GPS-enabled shortest path routing on mobil-
ity: a game theoretic approach. Transportation Research Board 97th Annual Meeting, 2018.

[5] Patire, A. D., M. Wright, B. Prodhomme, and A. M. Bayen, How much GPS data do we
need? Transportation Research Part C: Emerging Technologies, Vol. 58, 2015, pp. 325–342.

[6] Crisostomi, E., S. Kirkland, and R. Shorten, A Google-like model of road network dynamics

Cabannes et al. 24

and its application to regulation and control. International Journal of Control, Vol. 84, No. 3,
2011, pp. 633–651.

[7] Wu, C., A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, Flow: Architecture and
benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:1710.05465,
2017.

[8] Langville, A. N. and C. D. Meyer, Google’s PageRank and beyond: The science of search
engine rankings. Princeton University Press, 2011.

[9] Zhang, Z. and Q. Chen, Comparison of the Eulerian and Lagrangian methods for predicting
particle transport in enclosed spaces. Atmospheric environment, Vol. 41, No. 25, 2007, pp.
5236–5248.

[10] Patriksson, M., The traffic assignment problem: models and methods. Courier Dover Publi-
cations, 2015.

[11] Zhao, X. and J. C. Spall, A Markovian framework for modeling dynamic network traffic. In
2018 Annual American Control Conference (ACC), IEEE, 2018, pp. 6616–6621.

[12] Gagniuc, P. A., Markov Chains. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2017.
[13] Godsil, C. and G. Royle, Algebraic Graph Theory, Vol. 207 of Graduate Texts in Mathemat-

ics. Springer New York, New York, NY, 2001.
[14] Porta, S., P. Crucitti, and V. Latora, The network analysis of urban streets: a dual approach.

Physica A: Statistical Mechanics and its Applications, Vol. 369, No. 2, 2006, pp. 853–866.
[15] Perederieieva, O., M. Ehrgott, J. Y. Wang, and A. Raith, A computational study of traffic as-

signment algorithms. In Australasian Transport Research Forum, Brisbane, Australia, 2013,
pp. 1–18.

[16] Wardrop, J. G., Some Theoretical Aspects of Road Traffic Research. In ICE Proceedings:
Engineering Divisions, 1952, Vol. 1, pp. 325–362.

[17] Beckmann, M., C. B. McGuire, and C. B. Winsten, Studies in the Economics of Transporta-
tion. Yale University Press, 1956.

[18] Nagurney, A., Network Economics: A Variational Inequality Approach. Advances in Com-
putational Economics, Springer US, 1998.

[19] Chiu, Y.-C., J. Bottom, M. Mahut, A. Paz, R. Balakrishna, T. Waller, and J. Hicks, Dynamic
Traffic Assignment A primer. Transporation Research Circular Number E-C153, 2011.

[20] Saw, K., B. Katti, and G. Joshi, Literature review of traffic assignment: static and dynamic.
International Journal of Transportation Engineering, Vol. 2, No. 4, 2015, pp. 339–347.

[21] Szeto, W. and H. K. Lo, Dynamic Traffic Assignment: Properties and Extensions. Transport-
metrica, Vol. 2, No. 1, 2006, pp. 31–52.

[22] Peeta, S. and A. K. Ziliaskopoulos, Foundations of Dynamic Traffic Assignment: The Past,
the Present and the Future. Networks and Spatial Economics, Vol. 1, No. 3, 2001, pp. 233–
265.

[23] Krajzewicz, D., G. Hertkorn, C. Rössel, and P. Wagner, SUMO (Simulation of Urban
MObility)-an open-source traffic simulation. In Proceedings of the 4th middle East Sympo-
sium on Simulation and Modelling (MESM20002), 2002, pp. 183–187.

[24] Cabannes, T., M. Sangiovanni, A. Keimer, and A. M. Bayen, Regrets in Routing Networks:
Measuring the Impact of Routing Apps in Traffic. ACM Trans. Spatial Algorithms Syst.,
Vol. 5, No. 2, 2019, pp. 9:1–9:19.

[25] Cabannes, T., F. Shyu, E. Porter, S. Yao, Y. Wang, M. A. S. Vincentelli, S. Hinardi, M. Zhao,
and A. M. Bayen, Measuring regret in routing: assessing the impact of increased app usage.

Cabannes et al. 25

In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE,
2018, pp. 2589–2594.

[26] Krajzewicz, D., J. Erdmann, M. Behrisch, and L. Bieker, Recent Development and Appli-
cations of SUMO - Simulation of Urban MObility. International Journal On Advances in
Systems and Measurements, Vol. 5, No. 3&4, 2012, pp. 128–138.

[27] Fangyu Wu, J. L., Learning Matrix. https://github.com/lijiayi9712/Learning_
matrix.git, 2019.

[28] Jiménez, Á. B., J. L. Lázaro, and J. R. Dorronsoro, Finding Optimal Model Parameters by
Discrete Grid Search, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 120–127, 2007.

[29] Zabinsky, Z. B., Random Search Algorithms, American Cancer Society, 2011.
[30] Salimans, T., J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable

alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.
[31] Bergstra, J. and Y. Bengio, Random search for hyper-parameter optimization. Journal of

Machine Learning Research, Vol. 13, No. Feb, 2012, pp. 281–305.

View publication stats

