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Abstract—We present a three-part sensing system to
measure the acquisition of foraging proficiency in wild tree
squirrels. The first component is the eNut: a 3-D printed
enclosure in the size and shape of a large food item, such
as a walnut. The eNut contains an inertial measurement unit
(IMU), consisting of an accelerometer and a gyroscope, along
with a capsule containing a food reward (e.g., chopped nuts),
motivating the squirrel to manipulate the eNut to open the
reward capsule. The second component is a radio frequency
identification (RFID) gate that can detect the presence of a
known individual. The reader generates time-stamped labels
for the analysis of simultaneous video recordings of the
squirrel movements. Finally, the third component is a data
collection pipeline, which aggregates the sensor data in a
cloud backend server. The design process culminated in a fully functional prototype system tested under three field
conditions: two outdoor sites used for juvenile squirrel rehabilitation and a third site with free-ranging adult squirrels.
The accuracy of the collected data is assessed by leveraging laboratory settings in which acceleration and rotation
were checked against reference values produced by a testing infrastructure, custom-built for this application. Finally,
we present an inventory of food item manipulation movements (rotation and shaking) that are identified and quantified
with the eNut system. This system allows a level of granular analyses of foraging decisions that was not feasible
with prior technology, which would have important translational value in paradigms of animal behavior and wildlife
rehabilitation.

Index Terms— Accelerometer, animal behavior, biologging, foraging decision, gyroscope, inertial measurement unit
(IMU), radio frequency identification (RFID), sensing system, wildlife rehabilitation.

I. INTRODUCTION

ADVANCES in sensor technology have greatly improved
the study of animal behavior, allowing for observations of

previously unobservable behaviors. Dramatic examples, using
a “black box” methodology, allow biologists to create a daily
diary of behaviors, even in previously inaccessible species
such as deep-diving penguins [1]. With the continued minia-
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turization of sensors, biologists are now able to track animals
from insects to cheetahs, across enormous scales of time and
space. Furthermore, the employment of machine learning leads
the field to new conceptual heights, with the ability to analyze
the big data of the new biologging sensors [2]. The bulky,
power-hungry telemetry tags of prior decades limited research
to species of a minimum body size and to studies whose dura-
tion was constrained by battery size and weight [3].Modern
sensing systems have allowed for new types of animal behavior
monitoring and data collection, such as the eating and drinking
behaviors of cattle on farms [4], [5], [6]. Wearable inertial
measurement units (IMUs) have extended to uses such as
tracking multibody dynamics of cheetahs [7] as well as using
machine learning models for classifying high-level animal
behaviors (sitting, walking, running, etc.) [8] and [6]. Sensors
such as radio frequency identification (RFID) tags [9] and
triaxial accelerometers [10] are now widely used in wildlife
studies, and have expanded the scope of research to include
physiological and cognitive processes, as well as processes that
would be biased by the presence of the human observer [11].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0006-8467-3019
https://orcid.org/0009-0002-8851-2280
https://orcid.org/0009-0004-7360-3168
https://orcid.org/0000-0002-7633-5910
https://orcid.org/0009-0007-2707-5239
https://orcid.org/0000-0002-3098-1546
https://orcid.org/0000-0003-0330-9700


CHAUHAN et al.: eNut : A SENSING SYSTEM TO MEASURE THE ACQUISITION OF FORAGING PROFICIENCY 30931

For instance, accelerometer-based sensing systems have been
used to monitor the activities (e.g., walking, running, eating,
and drinking) of large free-roaming animals [12]. Similar
accelerometer-based sensing devices, paired with a network
of Zigbee receiver nodes, have also been shown to be useful
for monitoring the activity levels of wild monkeys [13]. These
devices have also been used to record the differences in
movement patterns of animals with neurological defects like
multiple sclerosis [14]. Multisensor IoT devices, paired with
a data pipeline using Arduino microcontrollers and a cloud
backend, can also be used to monitor the vitals (e.g., heart rate,
oxygen levels, temperature, and movement) of household ani-
mals [15]. Although the real-world accuracy of such sensors,
primarily accelerometers and gyroscopes, are often inconsis-
tent [16] due to instability of random bias [17], there have been
several analyses for effective methods of resolving changes in
position and orientation with filters (moving average, alpha–
beta, and Kalman) to reduce noise and improve estimation
accuracies [17], [18]. Such a capacity to measure behavior
unobtrusively in remote settings has powerful implications
for progress in the study and conservation of threatened and
endangered species [2].

A. Context of the Work
Our goal in the present study is to employ these established

sensor technologies in a novel application: instrumenting an
electronic food item in a closed foraging system, where the
forager’s identity and location are registered by RFID and
video records. To our knowledge, this is the first study where
instead of instrumenting the forager, we are instrumenting
the food item. The rationale for this design is derived from
our larger research goal, which is to study the acquisition
of survival skills in captive juvenile squirrels being held in
wildlife rehabilitation centers.

New research in conservation biology has demonstrated the
importance of scaffolded learning—termed “headstarting”—
during development for endangered species [19]. Vertebrate
species with complex life history strategies, such as tree
squirrels, face steep challenges to learn to forage and seek
refuge, while at the same time, escaping predation. Under
natural conditions, juvenile tree squirrels show extreme rates
of mortality during their period of development, as close to
75% of squirrels die [20]. In a songbird species (yellow-eyed
Junco), juvenile mortality results from inadequate learning
experiences, which leads to starvation from poor foraging
skills and predation from poor escape skills [21], [22]. Learn-
ing is important for locomotion: wild fox squirrels show
flexible “parkour” motor learning while leaping gaps between
artificial branches in an experimental apparatus [23].

While juvenile squirrels have an innate propensity to gnaw
on items exuding food odors, this is shaped via experience
and learning [24], [25], which includes skills gained from
observing experienced adults [26]. The juvenile tree squirrel
raised in captivity thus faces the important challenge of
learning to manipulate and open the hard nuts that its future
survival depends on.

Both species of tree squirrels in our study, the Eastern
Gray Squirrel (Sciurus carolinensis) and the Fox Squirrel

(Sciurus niger), are specialized scatter hoarders, creating food
caches with a single deposit. In contrast, larder hoarding
squirrel species use multiple deposits to create large middens.
But scatter hoarders rely on spatial memory to efficiently
retrieve their scattered caches during periods of scarcity [27].
Because each seed or nut is cached separately, the scatter
hoarder faces a complicated decision tree: first, whether to eat
or cache, decided by opportunity costs at that moment [28],
[29], [30], and second, how much time and energy to invest
in the manufacture of the cache [31].

According to the inherent value of the food item, squirrels
strategically invest their efforts to reduce the risk of cache
pilferage. Some of the investments that are proportionate
to the value of the item are how far the item is carried,
the nearest-neighbor distance to the next cache and spatial
chunking, or placing similar items in the same area, a tactic
which reduces the cognitive load of recall [32], [33].

Thus, it is critical for scatter hoarding species to precisely
assess the characteristics of a food item. This has only been
studied in one species of squirrel [31] and three species of
birds. Jays and nutcrackers in the crow family (Corvidae)
assess an item by clacking it in their beak, where the sound of
the seed hitting the beak in this way is apparently diagnostic
of the seed’s quality [34], [35], [36].

Two nut assessment movements have been identified in tree
squirrels [31]. These are: the paw manipulation, where the nut
is rotated by the paws while being held in the mouth, and
the head flick, where the squirrel grasps the nut firmly in its
mouth and flicks its head from side to side. The head flick is
characteristic of these two obligate scatter hoarding species,
the subjects of the present study.

B. Contributions of the Article
This article presents a high-fidelity, multimodal hard-

ware/software sensing system that enables quantitative animal
psychology research in a variety of environments. Specifi-
cally, this system enables scientists to study how squirrels
approach, interact with, and learn about their food. This is,
to our knowledge, the first design of a food item instrumented
with sensors to quantify animal foraging skills—in this case,
a squirrel’s ability to open a nut. The food-mounted sensor is
embedded inside a 3-D printed nut, the eNut, which is itself
integrated into a system of remote RFID readers and video
cameras that record the identity and behavioral context of the
foraging bout with the sensor-equipped food object, the eNut.
The eNut sensors are capable of detecting movements (force,
rotation, and acceleration) previously documented in squirrels
making assessment decisions about nuts. Our system can
collect data through three different pipelines, incorporating dif-
ferent devices for different experimental settings, ranging from
caged squirrels to wild squirrels in open areas. These pipelines
include a smartphone app, laptop app, and an Arduino receiver
(for cage settings), all of which pair with the eNut for
wireless data transmission. The data is recorded on-device
and then aggregated on a cloud backend server. Finally, with
our custom data processing software, we are able to extract
a variety of metrics for each squirrel interaction, includ-
ing the following: band of actuation (in frequency domain),
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time taken to open the eNut, total number of rotations,
distribution of rotation speeds, and distribution of shaking
forces.

The article is structured as follows: In Section II, we outline
the several design constraints and desirable metrics that can
be extracted from collected data. In Section III, the eNut
system is presented, including the physical nut enclosure,
the data pipelines that have been utilized to collect data
in several experiment settings, and methods of time-tagging
data for postexperiment analysis. This section also includes
the RFID and video camera system to perform longitudi-
nal studies of individual squirrel interactions with the eNut.
Section IV discusses the three sites of squirrels for which the
procedure for conducting experiments is outlined. In order
to ensure the field work accuracy of data and its analysis
procedures, in Section V we discuss the several experiments
we conducted of accelerometer and gyroscope motion in
controlled settings while outlining extractable metrics (through
Fourier analysis, net acceleration graphs, etc.) Section VI
presents data collected in our squirrel cage settings and the
many metrics that have been successfully extracted. Finally,
Section VII summarizes the contributions of this article while
documenting several improvements and methods of perform-
ing large-scale studies and further analyzing squirrel foraging
behaviors.

II. PROBLEM STATEMENT

A. Squirrel Monitoring System
Prior studies of this fundamental problem in the life of the

juvenile squirrel—how to assess the value of a food item to
inform its cache investment decision—have had to rely only
on analysis of direct observation and video records. Here,
we harness the power of sensor technologies to precisely
measure the assessment behaviors (rotation and head flicks)
employed by known individual squirrels in a captive setting,
where the squirrel’s identity and location is derived from
simultaneous records from video- and custom-designed RFID
readers. In addition to naive captive juveniles, learning to
handle nuts for the first time, we measure the same movements
in wild adult squirrels, with extensive foraging experience
but also naive to the instrumented food item (eNut). Prior
studies of this behavior in wild adult squirrels identify three
key parameters in the squirrel’s assessment decision that can
be manipulated experimentally: the mass, volume, and species
of food item. This is the parametric space, within which we
will explore the decision-making processes of the squirrel
in response to the qualities of the food item it encounters.
Our sensing system generates the data used to infer the
behavior of the squirrel, measured 24/7 in a remote setting, and
calibrated with a time-stamping RFID gate and simultaneous
video records. A modular data collection pipeline tags the
identity of the squirrel and the time of entry to the zone of
interest to interact with the eNut. The pipeline records key
handling parameters: the force exerted during a head flick, the
number, frequency, and speed of rotations, the time invested in
opening the nut, and the overall pattern of rotation and attack
(gnawing).

B. System Requirements
In order to provide the required data, the system proposed

needs to provide the following quantities.
1) Time-tagged video, for further animal behavioral studies.
2) Acceleration and rotation of the eNut as raw data for the

study.
With this, and as is illustrated in the rest of this work, the

developed system enables us to record time-series data, from
which numerous useful animal behavioral characteristics can
be extracted, such as engagement time (the amount of time a
squirrel spends working at the eNut), opening time, amount of
rotation before opening, amount of shaking during the process,
and frequencies at which the squirrel operates.

III. SYSTEM DESIGN

This section describes the design of the proposed squir-
rel activity monitoring system. The system includes three
components, described below: 1) the eNut, which we use to
measure the squirrel activity; 2) the RFID gate, which we
use to time-tag the activities of the squirrel (using an RFID
chip we inject into the squirrel) on the video collected by the
cameras of the system; and 3) and finally the data integration
pipeline, used downstream of the system to aggregate the
measurements.

A. Sensor (eNut)
1) 3-D Printed Enclosure: The eNut was designed to mimic

the natural form of large tree seeds that these species have
co-evolved with as seed consumers and dispersers [37]. Given
the constraints of hardware size and form-factor, the 3-D
printed enclosure is similar to a large English walnut. There
are three key components of the design.

1) A bottom section constructed in two pieces. It contains
an armored internal cavity enclosing the Puck.js and up
to two quarters (USD 25 cent coin) for additional weight
variation. The two pieces are attached together with
screws. The entire bottom section protects the electronic
components from the squirrel gnawing. This design also
facilitates the removal and replacement of the printed
circuit board (PCB) and sensing hardware.

2) A top section in the form of a hollow capsule on one
end containing a food reward (e.g., chopped walnuts and
peanut butter) on the top of the eNut. The top surface of
the capsule is perforated, so that the food odor can be
detected. The squirrel must thus crack open the capsule
to consume the contents, which mimics the opening of
a hard nut such as a walnut.

3) A projection acting as a stem on the capsule, facilitating
the natural behaviors of grasping, head flicking, and
carrying a nut to a different location, either to consume
or cache it.

Fig. 1 depicts the final eNut design, consisting of three 3-D
printed components. The two components that make up the
bottom half of the eNut contain a cavity where the Puck.js
is installed, along with space for up to two quarters (for
additional weight variation). The lid is secured on top of the
eNut with a nontoxic glue.
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Fig. 1. Left: final eNut design showing the Puck.js PCB inside one half
with top cap on. Right: final eNut design showing enclosed bottom half
with walnut crumbs on top, cap not shown.

2) Sensing Hardware: We chose the Puck.js for the eNut
hardware because it provides a compact, low-power Bluetooth-
enabled multisensor that fits our design constraints. This type
of sensor has been used for applications such as fall-prevention
systems for older adults [38] and function status measurements
for adults with Alzheimer’s [39]. Some of the sensors in
this package include the following: accelerometer, gyroscope,
magnetometer, light, and temperature. The firmware runs a
custom implementation of the Espruino JavaScript interpreter,
allowing software to be written in JavaScript. The Espruino
firmware was modified to set the sensors to run in their
high performance mode (with higher output data rates) as
well as enable hardware I 2C instead of the default software
polling method. The Puck.js is powered by a user-replaceable
CR2032 battery, which made it convenient both in terms of
physical size and in terms of operating the device. Using our
custom firmware and JavaScript software, we were able to
stream six-axis IMU (accelerometer and gyroscope) data over
Bluetooth Low Energy (BLE) at up to 250 Hz. The physical
PCB is a 29 mm circle, approximately 8.5 mm thick, which
fits well within the design constraints of the eNut.

3) Data Pipelines: We initially developed the first eNut
sensor data pipeline to utilize our existing hardware setup
designed for the RFID gate (i.e., an Arduino Uno board).
To interface the Arduino Uno with the Puck.js (a BLE-enabled
device), we added the Arduino Nano BLE board. Our software
on the Arduino Nano BLE receives sensor data at up to 20 Hz
over BLE from the Puck.js, and transmits the recieved sensor
data to the Arduino Uno over a serial I 2C channel. This is then
handled by firmware on the Arduino Uno, which stores the data
in .csv format on an SD card, and periodically uploads this to a
Firebase database on Google Cloud (using the Firebase library
for Arduino). Then, we can access the data for visualization
and analysis with our Python scripts using HTTP requests to
the database.

In order to accommodate a higher data throughput in this
system, we decided to explore alternative pipelines that allow
us to collect higher frequency data. We developed a mobile
app for iOS that allowed for live data visualizations, faster data
collection, and easy portability/sharing of data. This platform
allowed us to collect data at up to 50 Hz, and we tested data
collection for a few experiments using this pipeline.

Fig. 2. Three paths for accelerometer and gyroscope data to be
streamed from the eNut. The path used depends on the type of data col-
lection: asynchronous, in-cage (using the Cage Setup), or synchronous
(using the mobile app or laptop web app).

However, to achieve the maximum possible data throughput
with this sensing hardware, we developed a web app for
macOS/Windows that (using BLE serial) can receive data at
up to 250 Hz. This is the most performant pipeline that we
developed, and it is what we used for the majority of our
experiments. Fig. 2 depicts various pipelines we developed,
as well as the associated hardware components used and the
communication protocols employed.

4) Data Collection: To collect data, we pair the Puck.js with
the preferred data collection node (e.g., Arduino Nano BLE,
smartphone, or laptop), and install it inside the eNut. Then,
we can remotely start/stop the streaming of data through the
respective software. We also utilized on-device motion detec-
tion algorithms to preserve battery life and avoid streaming
sensor data when the device is at a standstill (i.e., the squirrel
is not interacting with the eNut).

5) Time-Tags: Our data collection software has a tagging
feature, which allows us to manually log timestamps when
squirrels exhibit useful/relevant behaviors. This serves to assist
with the downstream data analysis. The tags are used to mark
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Fig. 3. Left: final version of 3-D printed RFID antenna frame. Right:
front view of the RFID reader PCB (approximate size: 35 mm by 36 mm).

important times during the eNut opening (e.g., started/stopped
moving around the cage, started/stopped rotating the eNut,
started/stopped shaking the eNut, opened the eNut, dropped
the eNut, etc.). Once the eNut is opened, the data collection
is stopped, and both the six-axis IMU data and a separate
file with all of the tagged timestamps are saved. Afterward,
we record event descriptions for each tag and save it with
the corresponding flag file. When processing the videos and
sensor data, we can synchronize the streams using their
respective timestamp information. Then, using the tagged
timestamps, we can segment the data based on the squirrel’s
actions/behavior.

B. Squirrel Monitoring System (RFID + Video Camera)
1) Squirrel ID and Time-Tagging System: The full system

was designed to operate continuously and monitor multiple
squirrels simultaneously.1 Thus, we needed a component of
the system to produce the following two attributes for the data.

1) Squirrel Identification: We need an automated way to
detect which squirrel is handling the eNut, so we can
perform longitudinal studies on individual squirrels.

2) Time-Tagging: In order to process squirrel activity video
data more efficiently, we need to record timestamps cor-
responding to their activities. This is achieved through
the design and deployment of an RFID gate, which
triggers a timestamp log each time a squirrel (with
a unique RFID tag embedded) goes through the gate
to get the eNut. Most animals found orphaned and
saved by animal shelters in California are chipped for
further monitoring purposes before they are released in
nature. In the present case, we worked with two shelter
organizations and provided them with RFID tags that
are compatible with our system; the RFID tags were
injected into the squirrels by animal shelter staff.

2) RFID Gate: The RFID gate was designed and deployed in
Site 2, so we could perform longitudinal studies of individual
squirrels. It consists of a 3-D printed frame that the squirrels
have to pass through to grab the eNut. The 3-D printed frame
is designed to enclose an RFID antenna coil, which is used to
detect the RFID tag (preinjected into the squirrel) when the
squirrel goes through the gate.

The RFID reader is an off-the-shelf system called 134.2 K
AGV RFID Long Range Animal Tag Embed Reader Module.
The reader is capable of reading tags at a frequency of

1Each of the squirrels carries a different RFID tag with a unique ID.

134.2 kHz. The front of the PCB is shown in Fig. 3, and
its dimensions are approximately 35 mm by 36 mm, with the
accompanying antenna measuring at 97 mm by 97 mm. The
supply voltage range is 5–9 V and at 9 V, the working current
is around 120 mA. The inductance of the antenna is about
580 µH.

We use an emulated serial communication on an Arduino
Uno to interface with the RFID reader. The following pseudo-
code snippet, derived from an online forum post [40], describes
how to receive and decode the payload sent by the RFID tag.

Algorithm 1 RFID Reader Pseudocode
1. import necessary libraries
2. set up global variables
procedure SETUP

1. initialize serial port for RFID reader
2. initialize real-time clock
3. initialize file system interface
4. connect to local Wi-Fi network

end procedure
procedure LOOP

while true do
poll RFID reader for new tags
if new tag detected then

1. decode tag ID using bitwise operations
2. save event log in.csv format to SD card
3. queue event for logging on ThingSpeak

end if
end while

end procedure

Because each RFID tag has a unique numerical identifier,
we can identify the squirrels as they pass through the RFID
gate.

3) Iterative Design Process: The design of RFID systems
took two iterations. In the final iteration, we referenced
an Arduino-based RFID reader, developed as part of the
University of Oklahoma Biologging Initiative [41]. The
Arduino-based RFID reader is equipped with an SD card
module, a real-time clock, and an embedded EM4095 RFID
reader-integrated circuit. The EM4095 circuit by default sup-
ports reading RFID tags at 125 kHz, which was different
from our 134.2 kHz animal tags. The existing reader, however,
worked with 134.2 kHz tags, performed reliably, and is easy
to use with an Arduino Uno. The amount of code required is
minimal and is readily available from Arduino forums.

C. Downstream Data Integration
To combine the two systems used above, we integrated the

RFID tag detection with the eNut data streaming pipeline, thus
simplifying the hardware setup. This allows for a compact
solution for centralized data logging and monitoring, and the
data can be uploaded to a backend webserver for analysis.
However, there were some challenges with implementing this
on a single-threaded Arduino Uno (where time-slicing led to
slower data rates), so we propose the future development of
custom hardware for both the eNut and centralized collection
system to avoid this problem.
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Fig. 4. Left: site 1 cage (Piedmont, CA). Middle: Site 2 cage (Novato,
CA). Right: site 3 (UC Berkeley Campus).

IV. DATA COLLECTION PROCEDURES

The components of the system were tested in three different
sites depicted in Fig. 4. Two sites are rewilding cages: Site 1,
located in Piedmont, CA, and Site 2, located in Novato, CA.
The specific components of the system tested in the three sites
as well as the squirrel demographics used are described next.

A. Rewilding Site 1: Captive Juvenile Fox Squirrels
1) Study Animals: Six Fox Squirrels (two females and four

males), orphaned in three sites (Alameda County, CA), were
rescued by wildlife rehabilitators in March 2023. These squir-
rels were then bottle fed in captivity, with a slow introduction
to solid foods and nuts in the shell. By the age of ten
weeks, all squirrels were opening and eating nuts, and by the
age of 12–14 weeks, all squirrels were transferred to Site 1,
an outdoor rewilding cage (Piedmont, CA). Here, they were
habituated to outdoor conditions, eating a diet of fruit, nuts,
and vegetables for an additional four weeks. At the age of 19–
21 weeks, the group of squirrels was presented with a series
of baited eNuts. The eNut exposure continued for 1–2 weeks,
after which the squirrels were released into natural habitat.

2) Procedure: The original food reward for this group was
chopped walnuts. The squirrels, however, did not attempt to
open these eNuts. After being given more exposure to walnuts
in the diet, the squirrels began to pick up the eNut and attempt
to rotate and open it. Such efforts were not sustained and
no squirrel succeeded in opening the eNut. A new method
was tried: a thin layer of peanut butter was applied to the
top capsule, covering the perforations, with several pieces of
peanut kernel placed on top of this layer. This change in
protocol succeeded in attracting the attention and efforts of
the squirrels, perhaps because of the stronger scent or a food
preference, and this was the reward used for the remaining
observations at this site.

The reward capsule was filled and glued to the bottom
section, no more than 15 min before the trial began, as the
squirrels appeared to lose interest in capsules filled more than
15 min before exposure, perhaps because of the loss of volatile
odors. The Puck.js is also set up, connected, and placed inside
the eNut shortly before the trial began.

A singular eNut was offered to the cage of squirrels usually
between 11 A.M. and 4:30 P.M., though also at different
times (ranging from 9 A.M. to 6:30 P.M.). The eNut was
released to the squirrels in one of two locations: a food
station (accessible through a small hatch) or placed on top
of their large wooden nest box. The location was chosen
based on the squirrels’ activity levels: when highly active,
it was placed at the food station; if squirrels were nesting,
it was placed on top of their nest. All eNut interactions

Fig. 5. Snapshots of a squirrel on the UC Berkeley campus interacting
with an eNut prototype.

were observed and simultaneously recorded on video (smart
phone). Accelerometer and gyroscope data recording began
immediately when the squirrel picked up the eNut.

During the span of the experiment, we marked timestamps
where the squirrels started or stopped a new behavior/activity,
or when the squirrels moved to a new location. Most trials
were completed in a single location but squirrels moved up
to three times in some trials. Timestamps were also marked
for eNut events, such as its successful opening or being
dropped. A total of twenty experiments were conducted in
this environment over the month of June 2023.

B. Rewilding Site 2: Captive Juvenile Eastern Gray
Squirrels

1) Study Animals: The second site was located in Marin
County, CA, and operated by a second wildlife rehabil-
itation organization. Five juvenile Eastern Gray Squirrels
(8–10 weeks of age) were released into a large outdoor enclo-
sure in May 2023. Their movements were recorded for two
weeks starting in late May, and they were released into natural
habitat in Marin County at the end of June.

2) Procedure: The outdoor cage was instrumented with the
RFID gate readers and cameras. Its primary function for the
present study was the validation of the RFID readers. This was
done by using event recorder software (Noldus Observer XT)
to identify the date and timestamp of movements and behaviors
from video recordings. We then manually cross checked the
timestamps to obtain the identity of squirrels passing the gate
at different times, with the events recorded at the same time
by the RFID reader.

C. Site 3: Free-Ranging Campus Adult Fox Squirrels
The third site was located in Berkeley, CA. Its primary

function for the present study was the collection of baseline
eNut manipulation data with experienced adult squirrels, as
depicted in Fig. 5. Adult tree squirrels are highly habituated
to humans on university campuses and we have studied the for-
aging and movement dynamics of campus squirrels on the UC
Berkeley campus [23], [31]. The goal of the squirrel research
is to understand the behavioral ecology of cognitive challenges
faced by free-ranging wild animals. Scatter hoarding species,
both squirrels and many species of birds, show highly sophis-
ticated spatial abilities and decision-making processes, as well
as brain specializations [27]. Studying cognition in the wild in
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Fig. 6. Motor-driven slider-crank apparatus designed specifically for
validating sensor data and methods for data analysis for this study.
The diagram above is the top-down view of the apparatus, whereas
the bottom image is the assembled apparatus. The Puck.js is mounted
securely on the cart, highlighted in the orange box.

such champion species, both in terms of complex foraging and
locomotory decisions [23], contextualizes the same processes
studied in more generalist species, such as the domesticated
laboratory rat [42], [43].

For this specific study, we used the mobile application data
collection pipeline to collect data at Site 3; this method was
flexible and convenient in this field context, where squirrel
movements were unpredictable. The experiments were con-
ducted over three separate days, with an average of 2–3
individual squirrels on each day.

D. Institutional Approval
This research was conducted under a protocol approved by

the University of California at Berkeley Animal Care and Use
Committee.

V. VALIDATION DATA FOR DATA PROCESSING

A. Accelerometer Data
1) Experiment 1: Slider Crank: Assessing the field work

accuracy of data collected by the IMU required a testing
apparatus. One such apparatus was created for the purpose
of validating the eNut. This apparatus, depicted in Fig. 6,
is a motor-driven slider-crank linkage with a cart acting as
a piston constrained to 1-D motion on a rail. The cart is
mounted to the rail with ball-bearing rollers and the Puck.js
was securely mounted to the cart, such that only one of the
accelerometer’s axes aligned with the direction of motion. This
linear motion profile mimics that of simple harmonic motion
due to the nature of the crank revolving around the motor
output shaft. By changing the motor output shaft speed, the
oscillation frequency can be controlled.

Fig. 7. Top: slider-crank oscillated raw accelerometer data in all three
axes, showing instantaneous acceleration in m/s2. Bottom: single-
integrated accelerometer data from the slider-crank apparatus in all
three axes, showing instantaneous velocities in m/s.

Fig. 8. l2 norm of FFTs of each of the three accelerometer axes from
the slider-crank oscillation data. The components of gravity resulted in
an offset and peak in the FFT at 0 Hz, which is not shown.

However, the raw oscillation data itself included extraneous
high-frequency noise due to the nonideal motion of the cart.
A moving average filter removes this noise and produces the
data, depicted in Fig. 7. We validated the real-world motion
by double integrating the net instantaneous acceleration to
calculate the position as a function of time. Fig. 7 shows the
single-integrated accelerometer data for each axis, but there is
a significant amount of drift, which only becomes worse in
the double-integrated signal. This is likely due to the nature
of the accelerometer sensor itself, and is compounded by error
introduced by the the nonideal motion of the system. Theoret-
ically, the motion should be similar to that of simple harmonic
motion, but the reality is that this system produces imperfect
sinusoidal motion, due to several variables, including frictions.

When applying the FFT on the raw accelerations in each
axis and combining them, the visible peak (shown in Fig. 8)
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is at 3.225 Hz which matches the expected frequency of
approximately 3–4 Hz, as an 1150 RPM motor was running at
20% power. The combined FFTs of all three axes are computed
as follows:2

FFTcombined =

√
(FFT (ax ))

2
+

(
FFT

(
ay

))2
+ (FFT (az))

2.

(1)

This peak in the FFT is not significantly higher than the rest
of the FFT signal, due to noise in the accelerometer signal.
This figure shows that although the accelerometer data may
be inherently noisy (and drift is likely when integrating across
longer time series), the FFT of the accelerometer data is
still useful for determining the amplitudes and frequencies of
shaking in field work experiments.

2) Experiment 2: Hand Oscillation: Another form of data val-
idation was oscillating the Puck.js approximately 10 cm back
and forth by hand and recording data for two experiments, one
each for the accelerometer’s x- and y-axes. Although there
is non-negligible human-introduced error in this motion, the
experiment was still useful for analysis.

Fig. 9 shows the raw accelerations in all three axes for
oscillation by hand in the y- and x-axes respectively. This
method, even with a moving average filter, shows the inherent
noise in the accelerometer readings, but can be used to extract
metrics such as idle time and motion across the series by
applying a certain threshold. The magnitudes displayed in the
figures show a frequency of oscillation very similar to that of
the experiment: six oscillations in 10 s, which matches the
expected 0.6 Hz, also matching the FFT analysis shown later.

Figs. 10 and 11 show the single-integrated and double-
integrated acceleration, in all three axes, for oscillations in
the y- and x-axes respectively. To avoid accumulating error
from the steady-state sensor bias, we estimate the dc offset and
shift the signal so that it is centered around 0. This method
is not completely immune to accumulation error across longer
periods of time, but these experiments were short enough to
show the prominent motion profiles in the second-integral
graphs (position as a function of time) despite the error.
The first graph in Fig. 10 shows the first integration of the
originally noisy accelerometer signal, with oscillation in only
one of the axes, as expected. However, in Fig. 11, there is a
clear drift in the second integration of the accelerometer data
due to inaccuracies in our method of removing the sensor noise
and constant sensor offset in each axis.

As expected, the double-integrated graph shows sinu-
soidal oscillations with an approximate magnitude of 0.1
m. However, in both the x and y accelerometer oscillation
experiments, a gradual drift is apparent, which can be reduced
with higher sampling frequencies as well as high-speed on-
device integration calculations, rather than integrating during
the postprocessing stage.

Such controlled experiments to validate the accelerometer
signal show the inherent noisiness in measured signals, which,

2The slight abuse of notation (intentional for simplicity) in this formula is to
be understood as follows: FFTcombined is a vector containing the magnitudes
of FFT spectrum components, hence each of the (FFT(ai ))

2, i = x , y, z is the
vector of squared magnitudes of FFT spectrum components and FFTcombined
is a vector of same size.

Fig. 9. Hand-oscillated y - and x-axis raw accelerometer data in all three
axes, showing instantaneous acceleration in m/s2 respectively.

Fig. 10. Hand-oscillated y -axis single- and double-integrated (respec-
tively) accelerometer data in all three axes, showing change in velocity
(m/s) and change in position (m).

across longer time horizons, can cause accumulation inaccura-
cies, proving the accelerometer to be less useful in extracting
accurate measurements. However, major axes of acceleration
and/or oscillation can be extracted, as well as high-level trends
of motion profiles.

Generally, accelerometer data is quite noisy, and tends
to drift as well. In practice, estimating distance using an
accelerometer over long periods of time can be inaccurate,
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Fig. 11. Hand-oscillated x-axis single- and double-integrated (respec-
tively) accelerometer data in all three axes, showing change in velocity
(m/s) and change in position (m).

due to the random bias drift which gets doubly integrated over
time [44]. Using signal processing techniques like Kalman
filters can be effective in reducing random bias drift, but
only for short-duration distance estimation [45]. Still, there
are various challenges with the processing of IMU data for
applications such as attitude estimation of moving vehicles,
as accelerometers are not immune to external accelerations
(e.g., those produced by centripetal motion) and double inte-
grating the acceleration can quickly cause divergence in the
predicted and actual positions in 3-D space [46].

3) Fourier Analysis: Through our analysis of the FFT of
these two experiments, we have shown that our data processing
pipeline can identify the prominent frequencies of acceleration
in real-world data. The method utilized to combine FFTs
from all three axes is the same as (1), described earlier in
this section. Fig. 12 shows the FFT of the raw signal with
prominent peaks around 0.62–0.72 Hz, which are consistent
with the five to six oscillations done in about nine seconds
(an expected frequency of 0.55–0.66 Hz). Fig. 13 depicts
unfiltered data, so higher frequencies of noise are present, but
these can be removed with a low-pass filter, such as a moving
average (boxcar) filter. Regardless, the most prominent peak in
the FFT of the accelerometer data corresponds to the frequency
of oscillation by hand.

4) Net Acceleration Analysis: To classify whether the eNut
is moving or at rest, we use the unfiltered magnitude of the
net acceleration, which is computed as follows:

anet =

√
(ax − µx )

2
+

(
ay − µy

)2
+ (az − µz)

2 (2)

where ai is the raw acceleration measured along axis i and
µi is the average acceleration along axis i over the entire
time series. The net acceleration is used to classify different

Fig. 12. FFT of the unfiltered net acceleration for one of the hand-
oscillation experiments. The components of gravity resulted in an offset
and peak in the FFT at 0 Hz, which is not shown.

Fig. 13. Magnitude of net acceleration for oscillations in the y -axis,
calculated by taking the l2 norm of the acceleration in each of the three
axes (unfiltered magnitude of acceleration in gray and moving-average
filtered signal in red).

motion profiles and extract the total time spent for such.
These include shaking time and idle time, which can both
be seen visually in the net acceleration graph and classified
programmatically by applying a threshold to a moving window
of the net acceleration (i.e., if anet < athreshold: idle, else
shaking).

B. Gyroscope Data
1) Experiment: Hand Oscillation: Validating the gyroscope

data collection was done by oscillating the Puck.js between 0◦

and 180◦ by hand. Although there is non-negligible human-
introduced error in this motion, the experiment was useful for
analysis. Fig. 14 shows the raw gyroscope data in all three
axes for oscillation by hand in the z-axis.

Fig. 14 shows the single-integrated angular velocities in
all three axes to show the change in degrees with respect
to time. To avoid accumulating from the steady-state sensor
bias, we estimate the dc offset and shift the signal so that
it is centered around 0. This method, as stated previously,
is not completely immune to accumulation error across longer
periods of time, but these experiments were short enough to
show the motion profiles despite the error.

As expected, the graph of the integrated angular velocity
shows the sinusoidal oscillation in the z-axis, with negligible
accumulation in other axes. However, the graph shows that
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Fig. 14. Top: hand-oscillated raw gyroscope data in all three axes,
showing instantaneous angular velocity in ◦/s (deg/s). Bottom: hand-
oscillated z-axis single-integrated gyroscope data in all three axes,
showing change in ◦(deg).

Fig. 15. FFT of unfiltered gyroscope data for hand-oscillation experi-
ment. The dc offset resulted in a peak in the FFT at 0 Hz, which is not
shown.

the amplitude of the oscillations ranges between 150◦ and
160◦, but this error could be attributed to the gyroscope’s
limitations on the maximum angular velocity that can be
measured. As shown in Fig. 14, the gyroscope cannot measure
angular velocities above 245◦/s, which is a known limitation
of the sensor. The integrated gyroscope data is significantly
less noisy than that of the accelerometer.

2) Fourier Analysis: Similar to the accelerometer data, the
FFT of the gyroscope data allows us to validate its accuracy
on controlled experiments before applying this technique to
extract prominent frequencies of rotational motion from real-
world data. The method utilized to combine FFTs from all
three axes is the same as (1), described in Section V-A. Fig. 15
shows the FFT of the raw gyroscope signal with a prominent
peak at approximately 0.43 Hz, which roughly corresponds to
the six oscillations done in about 14 s (∼ 0.428 Hz).

Similar to the raw and integrated signals, the FFT of the
gyroscope data is less noisy than the accelerometer data,

Fig. 16. Magnitude of net acceleration for a squirrel eNut opening
experiment, calculated by taking the l2 norm of the acceleration in
each of the three axes (unfiltered magnitude of acceleration in gray and
moving-average filtered signal in red).

and hence more useful for the analysis of rotational motion.
Although the l2 norm of [1θx , 1θy, 1θz]

T , where 1θi is the
net rotation (integral of the angular velocity) in axis i = x ,
y, z, might not have a physical meaning that is easy to
interpret, it is very likely that the animal, while grabbing the
eNut, would apply the same periodicity of rotational motion
in all three axes, due to muscular coupling (and with different
magnitudes). This is because the axes of the applied rotational
motion is likely to have nonzero components in the three
axes dimensions simultaneously. Hence, taking the FFT of the
l2 norm of the integrated signal appeared to be a practical way
to capture dominant frequencies visible in the full motion of
the eNut, which was confirmed by the results.

VI. PRELIMINARY SQUIRREL DATA COLLECTION

A. Accelerometer Data
By applying a threshold on the net acceleration during squir-

rel interactions with the eNut, we can separate the segments of
the experiment in which the squirrel is shaking the eNut from
those in which the eNut is idle. The method is the same as (2),
described in Section V-A. Fig. 16 shows visually discernible
sections of shaking and idle time, both of which correlate with
the video analysis.

Applying the FFT (as described in Section V-A) on the
entire recording of the squirrel opening the eNut results
in irrelevant peaks, linked to frequencies of squirrel activ-
ity/engagement, as opposed to frequencies of motion. This
is due to idle times. Idle times in the data also introduce
lower (and higher, due to transients) frequencies in the decom-
position. Hence, applying the FFT on a subset of the data
is necessary to extract usable metrics on the frequencies of
shaking. Fig. 17 shows an example of a specific subset of the
data (which was selected by discerning time intervals of con-
tinuous shaking from the combined axes graph) from the same
experiment as shown in Fig. 16.

Therefore, applying the FFT on a subset of the data,
specifically on uninterrupted sections of shaking, provides the
peak of interest: the frequency of shaking, as shown in Fig. 18.
In this graph, there are significant peaks at 0.066 and 0.33 Hz,
representing the frequencies of shaking during this subsection
of the experiment. The 0.066 Hz frequency is due to the slow
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Fig. 17. Magnitude of net acceleration for a trimmed subsection of
a squirrel eNut opening experiment, calculated by taking the l2 norm
of the acceleration in each of the three axes (unfiltered magnitude of
acceleration in gray and moving-average filtered signal in red).

Fig. 18. FFT of a trimmed subset of all three axes of the unfiltered
gyroscope data (combined through l2 norm of axes) for the June 24,
2023 squirrel eNut opening experiment. The dc offset resulted in a peak
in the FFT at 0 Hz, which is not shown. The highest nonzero peak is at
0.066 Hz.

rolling of the eNut and the 0.33 Hz is the quick rotation of the
eNut as the squirrel gnaws on the screen. This was confirmed
by the time-tagged video. The method utilized to combine
FFTs from all three axes is the same as (1), described in
Section V-A.

The raw accelerometer data in each axis, as shown
in Fig. 19, is useful to understand primary axes of
motion/shaking, but also can be used to calculate metrics
such as maximum force applied (by multiplying the maximum
instantaneous acceleration experienced by the sensor with
the mass of the eNut: 39.03 g), as well as the average
force/acceleration throughout the experiment or a specific
subset of the signal. From the data in Fig. 19, we calculated
that the maximum force in x-, y-, and z-axes are 0.61, 0.56,
and 0.51 N respectively (given that the mass of the eNut is
39.03 g), and the average force applied throughout the entire
experiment was approximately 0.56 N.

B. Gyroscope Data
Raw gyroscope signals, such as those depicted in Fig. 20,

can be used to determine time intervals of idle and rotation
time throughout the experiment. Based on video analysis of
the squirrel experiments, the eNut was primarily experienc-
ing rotational motions rather than shaking. Therefore, the

Fig. 19. Raw accelerometer data for all three axes from the June 24,
2023 squirrel eNut opening experiment.

Fig. 20. Raw gyroscope signals for each of the three axes for the June
26, 2023 squirrel opening.

accelerometer signals presented above are likely projections
of these rotational motions. Threshold analysis (as described
in Section V-A4) is equally useful with the gyroscope signals.
To classify events (shaking, idle, opening, etc.), we used
the moving-average filtered data of all three gyroscope axes
combined. The method utilized to combine all three axes of
the gyroscope signals is as follows:

ωnet =

√
ωx 2 + ωy2 + ωz2 (3)

where ωx represent the angular velocity around the x-axis (and
similar for y and z). It is thus expected that the spectral anal-
ysis of ωnet of (3) would reveal dominant peaks visible across
the three axes of rotation. Fig. 21 showing the gyroscope
signal for all axes combined has discernible features, such as
idle periods between 12 000 and 15 000 ms and a sudden jolt
at 40 000 ms, which correlate with the recorded video. This
type of data extraction (event interval classification) is used to
compare across experiments and determine trends in total idle
times, opening time, and shaking times.

1) Analysis of Integrated Data: The integrated gyroscope
signals are used to determine the total number of rotations in
each axis as well as highlight events with major changes in the
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Fig. 21. Magnitude of net angular velocity for a squirrel eNut opening
experiment, calculated by taking the l2 norm of the angular velocity in
each of the three axes (unfiltered magnitude of angular velocity in gray
and moving-average filtered signal in red).

Fig. 22. Integrated signals for a successful eNut squirrel opening,
depicting each axis integrated separately.

orientation of the eNut (e.g., if the eNut was suddenly flipped
upside down). As shown in Fig. 22, the integrated gyroscope
data shows certain moments when the squirrel rapidly rotates
the eNut. The significant jump in orientation of the y-axis of
the eNut near 65 000 ms in Fig. 22 directly correlates with the
video, where the eNut was rotated upside down before being
opened.

The integrated data from Fig. 22 can be compared to the
integrated data of an unsuccessful opening, and across more
trials, certain features that lead to successful openings can be
extracted. For example, most successful openings appear to
have a final jolt, which can be seen both in the raw gyroscope
data as well as the integrated data. Fig. 23 shows the integrated
gyroscope data for an unsuccessful opening, where a final jolt
is not seen.

To compare trends in the total amount of rotation done by
the squirrel between experiments, an integrated signal of the
absolute value of the gyroscope signals for each axis can be
graphed. Fig. 24 shows the cumulative rotation of the eNut
across the entire June 26, 2023 Noon experiment. As shown,
the eNut is rotated approximately 6.5 rotations in each of the
axes before it was successfully opened. Displaying this metric
across several experiments can provide insight into their ability
to recognize the nut and make foraging decisions with it.

2) Fourier Analysis: The extracted subsections of the exper-
iments’ gyroscope data are also used for analyses of rotational
frequencies by applying an FFT. This method of performing

Fig. 23. Integrated signals for an unsuccessful eNut squirrel opening,
depicting each axis integrated separately.

Fig. 24. Integrated absolute value of raw gyroscope angular velocity
for each of the three axes from a trimmed subsection of the June 26,
2023 squirrel opening.

Fig. 25. Magnitude of net angular velocity for a trimmed subsection of a
squirrel eNut opening experiment, calculated by taking the l2 norm of
the angular velocity in each of the three axes (unfiltered magnitude of
angular velocity in gray and moving-average filtered signal in red).

FFTs on subsets of the experiment is more effective as idle
time signals are not considered. The method to extract these
subsets is similar to the one described previously: applying
a threshold to a moving window of the net acceleration and
comparing the average within the window if it is above the
threshold (i.e., if anet < athreshold: idle, else shaking). Data
segmentation can also be done by extracting signals based on
time intervals of interest that are visually determined from the
combined axes graphs. Fig. 25 shows a trimmed subset of the
June 26, 2023 Noon squirrel opening.
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Fig. 26. FFT of a trimmed subset of all three axes of the unfiltered
gyroscope data (combined through l2 norm of axes) for the June 26,
2023 squirrel eNut opening experiment. The zero frequency peak was
removed.

Applying an FFT on the trimmed data provides better
insight on primary rotational frequencies for a section of the
squirrel’s interaction with the eNut. Fig. 26 depicts the FFT
performed on a subset of the June 26, 2023 Noon squirrel
opening, showing prominent peaks at 2.952 and 3.943 Hz,
which are representative of the frequencies of angular veloc-
ities during this experiment. The method utilized to combine
FFTs from all three axes is the same as (1), described in
Section V-A.

C. RFID Gate Data
Our RFID monitoring system publishes live data on ThingS-

peak (an IoT data analysis platform) as squirrels pass through
the RFID gates. This data includes timestamps, the squirrel’s
unique identifier, and the specific gate they passed through.
We also describe the setup of RFID gates and monitoring video
cameras inside the Novato cage.

D. Video Data
In the Site 2 squirrel cage setup (Novato, CA), we had

multiple monitoring video cameras mounted, which allowed us
to record video data of squirrel behavior. We can access these
recordings from the internal SD card in each camera, and then
postprocess it to validate our sensing systems. This video data
is manually analyzed using the Observer XT software from
Noldus. Using this software, we are easily able to tag various
behaviors seen in the video data, ranging from squirrels enter-
ing/exiting nest box, to squirrels rotating/shaking the eNut.
Then, by comparing the events and their respective timestamps
from the RFID logs and the video tags, we are able to validate
the accuracy of our RFID gates. Our analysis of over 519
RFID gate crossings demonstrated that our RFID tag detection
was above 98.1%, using video recordings as the ground truth.
We calculated a 95% confidence interval to estimate the true
accuracy of the RFID tag detection: (0.979612, 0.981792).

E. Summary of Derived Data
Using the eNut sensing system and custom data analysis

software, we were then able to extract a variety of metrics,
derived from the raw accelerometer and gyroscope time-series
data.

1) Band of Actuation (in Frequency Domain): Using the
FFT, we can identify the primary frequencies at which
the squirrel rotates or shakes the eNut, and compare that
to the maximum possible actuation frequency squirrels
are capable of (e.g., when a squirrel scratches its ear).

2) Time Taken to Open the eNut: With the time-tags for
each experiment, we can analyze the distribution of
opening times in longitudinal studies to understand how
squirrels learn on their own over multiple trials, and also
by observing other squirrels’ attempts to open the eNut.

3) Total Number of Rotations: By integrating the gyroscope
data, we can determine how many times the squirrel
rotated the eNut, which could also serve to quantify the
amount of energy the squirrel spent in its attempt to
open the eNut.

4) Distribution of Rotation Speeds (Including the Min-
imum, Maximum, and Average): We can generate
histograms of the rotation speeds, and analyze the mean
and variance of distributions over time, to understand
the amount of energy the squirrel spends to open the
eNut, and how it varies over time.

5) Distribution of Shaking Forces (Including the Minimum,
Maximum, and Average): We can generate histograms
of the shaking force (calculated from the acceleration
data), and this would give us another way to quantify
the amount of energy the squirrel spent to open the eNut,
and how it varies over time.

6) Qualitative Data Extracted From Video: We can also
classify the types of motion the squirrel performs, and
compare that with whether they choose to open the eNut
immediately or cache it for later (and also how far and
how deep into the ground they end up caching the eNut,
if at all).

These metrics can be used to quantify specific types of
squirrel behavior and measure their learning (and analyze their
decision-making processes) over long-term studies.

F. Datasets for Supervised Machine Learning Models
The multimodal data (combination of IMU, RFID, and

video) collected by our system is especially useful because it
provides us with labeled and annotated data that is essential for
supervised machine learning applications. With such datasets,
we can train models to identify squirrel behavior using only
video data, which is generally challenging using traditional
methods due to the scale and speed of their movements.

VII. CONCLUSION

A. Summary of Contributions
In this article, we presented the eNut, a three-part sensing

system designed to monitor the activity of squirrels in the
wild. The eNut itself is a custom 3-D printed walnut that
contains an IMU embedded inside, which is paired with one
of the three data collection pipelines we developed to receive
and store the time-series sensor data. We also developed an
RFID gate system to track squirrel behavior and uniquely
identify the squirrel that is interacting with the eNut. Finally,
we developed postprocessing data analysis tools to extract
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various quantitative and qualitative metrics from the raw
sensor data and video streams.

We then detailed the hardware setups we created for three
different test sites for our initial round of experimentation with
squirrels, and the metrics we extracted from real-world sensor
data. We also confirmed the validity of our sensing system
and the collected data using a custom test fixture, demon-
strating that we can identify key parameters that describe the
prescribed motion of the eNut, with a strong focus on the
biological and psychological analyses of the quantitative and
qualitative data collected with our system.

B. Potential Improvements
Our system currently allows us to record high-frequency

accelerometer and gyroscope data from the eNut, at up to
250 Hz, and can detect squirrels passing through the RFID
gates with over 98% accuracy. Although we have demonstrated
the viability of combining both systems together with our
Arduino data pipeline, system limitations prevent us from
achieving the maximum possible data throughput in this
pipeline. We proposed the future development of custom
hardware that can support the highest data throughput for the
eNut IMU data, while also maintaining the high reliability of
RFID tag detection, without the use of software time-slicing.

The use of machine learning models to classify data can also
aid in the extraction of valuable metrics, such as idle time,
shaking time, and time to open the eNut. Several wearable
devices use models such as support vector machines (SVMs)
[47] and convolutional neural networks (CNNs) [48] to clas-
sify events, such as sitting, running, and eating. Such methods
can assist in feature extraction, reducing the effort required
for supervision and manual time-tagging of experiments.
Although we do not have enough data to claim statistical
significance of such trends measured, a larger dataset must
be obtained—through methods outlined below—to statistically
confirm whether most data presents similar trends. We outline
a data collection system and have not run large-scale pilots,
which would help in revealing statistical properties of the data,
squirrel behavior, and interactions with the eNut.

C. Citizen Science Perspectives
In the future, our system can potentially be extended to

enable large-scale citizen science studies all over the world.
The eNut utilizes low-cost sensing hardware that can easily be
configured and paired with our smartphone/laptop apps, which
allows just about anyone to conduct field experiments with
the squirrels in their vicinity. Potential next steps include the
development of an open-source platform where anyone can
document their experimental setup and upload their results.
This would allow us to rapidly collect a wide range of
data with different species of squirrels through crowdsourcing
the collection process, in different environments, and with
variations in the eNut size, shape, weight, and type of nut
contained inside.

D. Future Psychology Research
Using the eNut, we plan to conduct future experiments in

the three different test sites referenced earlier in order to gain

a larger dataset for which proper analysis would be needed
to be performed in order to confirm observed trends. We plan
to introduce variations in the eNut size, shape, and weight,
and study the correlation between the physical parameters and
whether or not the squirrels immediately consume the nut or
cache it for later.

APPENDIX

This section briefly illustrates the types of longitudinal data
that can be collected from the work presented earlier, as well
as the aggregate statistics that can be computed from it. With
the time-tagging and collected data, the following examples
show some of processed data that can be helpful for further
animal studies.

1) Total Time for Each Opening: How long the squirrel
spent trying to open each eNut; time-tagged video
data can confirm the measurements collected from
accelerometers and gyroscopes.

2) Evolution of the Opening Time Throughout the Duration
of the Experiment: Fig. 27 illustrates the data collected
through the experiment, and in particular a decreasing
trend (using a linear regression model), showing learning
of the squirrels, which become more proficient at eNut
opening.

3) Activity Duration Distribution: Activity can be assessed
by video, and categories include the following: opening,
traveling, licking, rotation, shaking, and chewing—see
Fig. 28.

a) Average (or Cumulative) Opening Time: A combi-
nation of a chewing and rotating motion, where
the squirrel attempts to pry open the eNut can
be computed to assess the full duration of such
processes (which involve cycling through different
activities: chewing, rotating, etc.)—see the cumu-
lative opening time is depicted as the sum of all
the activity categories in Fig. 28.

b) Idle Time: The squirrel is either just holding the
eNut or has put it down, and is not moving or
trying to open it in any way—refer to the dark
blue section of Fig. 28.

c) eNut Shaking Time: The squirrel is shaking the
eNut with a back and forth motion for a dura-
tion that can be measured—illustrated in green in
Fig. 28.

d) eNut Chewing Time: The squirrel chews on the
seam where the lid meets the body of the eNut;
this is usually a prying motion, where the squir-
rels wedge their teeth between the two parts and
attempt to pry them apart—illustrated in orange in
Fig. 28.

e) eNut Rotating Time: The squirrel rotates the eNut
in a circular motion—illustrated in red in Fig. 28.

f) eNut Licking Time: The squirrel sometimes licks
the remaining peanut butter off of the top of the
eNut—refer to the purple section of Fig. 28.

g) Traveling Time: The time the squirrel spends trav-
eling with the eNut can be measured; often, the
squirrel moves around the cage with the eNut,
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Fig. 27. Time evolution of the eNut opening time. Day one is the
first opening on June 12th. The linear fit shows a downward trend,
indicating that the squirrels learn and improve their eNut opening
abilities throughout the duration of the experiment.

Fig. 28. Distribution of squirrel activity classification (by day and
activity).

Fig. 29. Cumulative distribution of activity time exhibiting different
behaviors throughout experiments.

going from one spot to another, usually running
and jumping—illustrated in brown in Fig. 28.

4) Total Activity Time of Squirrels: Breakdown of activities
throughout the entire experiment—refer to Fig. 29.

For this iteration of datasets and experimentation, the met-
rics were extracted manually using the time-tagged raw data,
and correlated with video recordings of the experiments. In the
future, this can be done automatically using custom-trained
ML models, but doing so requires a significantly larger dataset
from large-scale experiments in a variety of scenarios with a
larger population of squirrels.

Fig. 30 depicts the net accelerometer and gyroscope plots,
top and bottom respectively, that exhibit different types of

Fig. 30. Net accelerometer and gyroscope graphs generated from
the squirrel cage experiment (unsuccessful) opening on June 18, 2023.
Several methods of attempting to open the eNut were seen in the video
analysis, which are denoted in both plots by lettered sections.

interactions with the eNut. This experiment was the one in
which the squirrel did not succeed in opening the eNut, which
allowed us to see a variety of opening techniques in the video
analysis. Sections A, E, and F in Fig. 30 depict the squirrel
rotating the eNut on its yaw axis, trying different angles
at many spots along the glued seam. Section B shows the
squirrel forcing the lid off at only one point with its incisors.
In Section C, the squirrel rotates the eNut several times to find
a different angle or possible opening to gnaw on. Sections D
and G exhibit sudden shaking with the eNut held tightly in
the squirrel’s mouth.
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