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T
he promise of generating societal benefit from
autonomous vehicle technology has long been
capturing the imagination of researchers, legisla-
tors, and popular culture. Its footprints can be
seen in the earliest stages of modern AV research

and development in the United States. AV technology
advancements, spanning over three decades of work, are
sometimes broken down into three generations:
Generation One. In the 1990’s, the Federal Highway Ad-
ministration (FHWA) established the National Automated
Highway System Consortium (NAHSC) to demonstrate
the potential of an automated vehicle and highway system
for societal benefit [1]. The consortium partners included
University of California, Berkeley, California Partners for
Advanced Transit and Highways (PATH), and General
Motors (GM), among several others. In the implementation
of Demo ’97 on Interstate 15 in San Diego [2], California,
the consortium introduced and/or brought to realization
concepts such as Adaptive Cruise Control (ACC), Vehicle-
to-Vehicle (V2V) Communication, and Cooperative ACC
(CACC) [3], [4], [5]. The demonstrations involved high-
speed platooning, made possible by V2V and CACC, as
well as infrastructure sensor integration. Moreover, it laid
the foundation for modern automated highway system
AHS architectures, emphasizing the importance of vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munications [6]. Some of the key challenges and barriers
faced at the time included scalability due to infrastructure,
reliable communication systems, and accurate vehicle po-
sitioning. Its eventual demise came in the late 1990’s with
tightening research budgets at USDOT.
Generation Two. In the 2000’s, the Defense Advanced
Research Projects Agency (DARPA) introduced the DARPA
Grand Challenge. In the first Grand Challenge (2004), a $1
million prize was offered to any team whose autonomous
vehicle could complete a 150-mile course in the Mojave
Desert; no teams were successful. The second Grand Chal-
lenge (2005) doubled the prize money, and five teams
were successful in completing the course [7]. The third
Grand Challenge (2007) moved to an urban environment.
The DARPA Grand Challenge competitions were notable
for creating a renewed interest in autonomous vehicles
and directly supported efforts to commercialize successful
technologies [8] in the following decade.
Generation Three. In the 2010’s, many major automo-
tive manufacturers (such as GM, BMW, Audi, and Tesla)
and technology companies (such as Google/Waymo, Uber,
Lyft) began developing autonomous vehicle technology for
commercialization purposes. The investments have gener-
ated an industrial ecosystem centered on hardware, soft-
ware, and services designed to advance fully autonomous
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driving. Today multiple companies are testing AVs in nu-
merous public roads in the US, with Waymo most notably
operating an autonomous ride-share service in Phoenix,
San Francisco, and Los Angeles without a safety driver
in the vehicle, and Cruise, which operates autonomous
shuttles in San Francisco. At the same time, Level 1 and
Level 2 automated vehicle technologies, including ACC,
are now widely available in the commercial market. These
commercial systems predominantly focus on safety and
driver comfort [9], rather than improved transportation
system efficiency [10].

Many experiments involved using CACC within pla-
tooning experiments for improving fuel efficiency on high-
ways [11]. In 2009, the Safe Road Trains for the Envi-
ronment (SARTRE) [12] three year project was funded
by the European Commission to investigate the benefits
of platooning (following previous European projects such
as PROMOTE CHAUFFEUR I + II or Konvoi), where
a leading bus or truck driven by a professional driver
controls a following platoon of a few heavy or lights
vehicles, and achieving up to 16% energy savings [13] on
public highways. In other works, Energy ITS [14] deployed
a platoon of three fully-automated trucks in Japan in 2008.
In 2011, nine teams developed CACC controllers with V2V
communication and compared them in urban and highway
settings as part of the Grand Cooperative Driving Chal-
lenge (GCDC) [15], [16] held in the Netherlands, and later
reiterated in a 2016 edition [17]. Between 2015 and 2017,
the California PATH program has been involved in CACC
truck platooning experiments on public highways [18].
More recently, the European ENSEMBLE project [19] in-
vestigated multi-brand truck platooning to integrate V2V
technologies in all European brands of trucks.

Additional studies have experimentally demonstrated
the benefits of vehicle platooning. In [20], [21], CACC
platoons were developed and deployed on commercially
available vehicles using linear control theory and string
stability. These CACC platoons were shown to outper-
form ACC vehicles in terms of disturbance dissipation.
[22] showed in simulation that a moderate penetration
rate of CACC vehicles can significantly increase network
capacity. The research in [23] demonstrated that CACC
control allows for safe platooning at low following dis-
tances and high speeds, thus improving traffic throughput.
Furthermore, [24] indicated that energy consumption in
freight trucks could be reduced by driving at low following
distances, due to decreased air resistance. Recent exper-
iments in [25] built upon these prior CACC studies by
employing model predictive control V2I communication,
showing that vehicle platoons can enhance throughput on
arterial roadways with traffic lights.

Our work brings full circle the nascent imaginings
from the early 1990’s. The Generation One promise of
automating highways for societal benefit began to manifest
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in the late 2010’s within our team and in several groups
around the world. In 2016, a group led by co-authors Delle
Monache, Piccoli, Seibold, Sprinkle, and Work replicated
the Sugiyama experiment [26] of string instability in a
ring road; in what is known as the “Arizona ring ex-
periment,” they further demonstrated that phantom jams
can be reduced using partially automated vehicle (AV)
technologies and specially-designed algorithms [27]. This
work was followed shortly by co-author Bayen’s lab at
UC Berkeley with the development of Flow, a software
package to interface then-state-of-the-art microsimulation
software with deep reinforcement learning (deep-RL) li-
braries [28], [29], [30], [31], [32], [33]. With Flow, the UC
Berkeley team was able to independently train an AV
controller to replicate the findings of the Arizona ring
experiment [34] and generalize them to a variety of other
settings, such as freeway and urban traffic [35]. (Note the
distinction in terminology between “autonomous vehicle”
and “automated vehicle,” specifically because our past and
present work focuses on automated longitudinal control as
Lagrangian traffic controllers.)

In 2019, co-authors Bayen, Piccoli, Seibold, Sprinkle,
and Work united to form the Congestion Impacts Reduc-
tion via CAV-in-the-loop Lagrangian Energy Smoothing
(CIRCLES) Consortium (see https://circles-consortium.
github.io/) [36], [37], [38], joined shortly thereafter by
co-authors Lee and Delle Monache, each leading various
aspects of the CIRCLES project. The CIRCLES project
seeks to extend these prior research efforts to real traffic.
To achieve our goals, our group designed a modular,
hierarchical control framework, consisting of a centralized
Speed Planner and decentralized Vehicle Controllers, and
implemented it on 100 vehicles in a large-scale field op-
erational test, dubbed the MegaVanderTest (MVT). Our
aim is to deploy flow-smoothing ACC-enabled AVs that
don’t require explicit communication and are mixed within
highway traffic in an unstructured way, contrary to many
of the CACC truck platooning experiments previously
mentioned. As many modern vehicles come equipped with
ACC technology, the focus of this work is to modify
the ACC algorithm to become significantly better at flow
smoothing, without requiring additional hardware, road
infrastructure, or V2V communication capabilities.

This article presents our control system design and
subsequent analysis of field test results. Diverse candi-
dates for each module of the framework are developed
utilizing cross-disciplinary knowledge and tools, including
ordinary differential equation/partial differential equation
(ODE/PDE)-based flow control [39], [40], deep-RL [41],
stabilization theory [42], functional analysis [43], optimal
control on microscopic and macroscopic systems [44], [45],
approximation theory [46], mean-field limits [47], non-
entropic solutions to hyperbolic systems [48], model pre-
dictive control (MPC) via linearly constrained quadratic

programming (LCQP) [49], kernel smoothing [50], traffic
flow theory [51], variable speed limit [52], and many other
areas. The control system was then evaluated and tested in
the open road as part of the MVT, the largest deployment
of AVs designed to smooth traffic flow. In this test, we
deployed 100 AVs on Interstate 24 (I-24) near Nashville,
TN in November 2022. The experiment coincided with the
debut of I-24 MOTION (https://i24motion.org) [53], [54],
a four-mile section of I-24 near Nashville, TN to capture
ultra-high resolution trajectory data of all vehicles.

The rest of the article is organized as follows: Section
“Design of the Controller Architecture” introduces the
MegaController, our controller architecture which consists
of several components that operate together. Section “De-
sign of Controller Components” then details the design
and functioning of each of these individual components.
Section “Candidate Controller Selection” explains how
controllers are selected for the test, and finally Section
“Open Road Field Operational Test” introduces the ex-
perimental design for the 100 AV deployment, as well
as implementation details for the selected controllers, de-
ployment on hardware and data collection procedures.
Furthermore, several sidebars are spread throughout the
paper, which can serve different roles: giving background
about certain parts of the projects, diving into much more
details about certain aspects of the project, or presenting
interesting work that happened before or in parallel to the
project, or that didn’t make it into the final deployment.
The sidebars are as follows, in order of appearance: “Adap-
tive Cruise Control Modeling”, “Macroscopic ODE/PDE
models”, “Optimal control of measure PDEs”, “MPC con-
troller”, “Optimized Vehicle Trajectory”, “Vehicle Energy
Models”, “Trajectory Simulator”, “Car-Following Models”
and “Vehicle Interfacing”.

Summary

The CIRCLES project aims to reduce instabilities in traffic
flow, which are naturally occurring phenomena due to hu-

man driving behavior. Also called “phantom jams" or “stop-
and-go waves,” these instabilities are a significant source of
wasted energy [55], [56]. Toward this goal, the CIRCLES
project designed a control system referred to as the Mega-
Controller by the CIRCLES team, that could be deployed in
real traffic. Our field experiment leveraged a heterogeneous
fleet of 100 longitudinally-controlled vehicles as Lagrangian
traffic actuators, each of which ran a controller with the
architecture described in this paper. The MegaController
is a hierarchical control architecture, which consists of two
main layers. The upper layer is called Speed Planner, and
is a centralized optimal control algorithm. It assigns speed
targets to the vehicles, conveyed through the LTE cellular
network. The lower layer is a control layer, running on each
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This work presents a modular, hierarchical control framework, consisting
of a centralized Speed Planner and decentralized Vehicle Controllers, as

it was used during the MegaVanderTest.

vehicle. It performs local actuation by overriding the stock
adaptive cruise controller, using the stock on-board sensors.
The Speed Planner ingests live data feeds provided by third
parties, as well as data from our own control vehicles, and
uses both to perform the speed assignment. The architec-
ture of the speed planner allows for modular use of standard
control techniques, such as optimal control, model predic-
tive control, kernel methods and others. The architecture
of the local controller allows for flexible implementation of
local controllers. Corresponding techniques include deep
reinforcement learning, model predictive control and explicit
controllers. Depending on the vehicle architecture, all on-
board sensing data can be accessed by the local controllers,
or only some. Likewise, control inputs vary across different
automakers, with inputs ranging from torque or acceleration
requests for some cars, and electronic selection of ACC
set points in others. The proposed architecture technically
allows for the combination of all possible settings proposed
above, that is {Speed planner algorithms} × {local con-
troller algorithms} × {full or partial sensing} × {torque or
speed control}. Most configurations were tested throughout
the ramp up to the MegaVandertest.

DESIGN OF THE CONTROLLER ARCHITECTURE
We introduce the MegaController, a control framework,
depicted in Figure 1, for the mixed autonomy traffic flow
problem. Mixed autonomy refers to the setting in which
some vehicles are automated, while other vehicles are
manually controlled (level 0 automation). The primary
design paradigm of the proposed control framework is
to achieve two goals: hierarchy for task allocation and
modularity for control flexibility.

We designed a hierarchical structure to efficiently coor-
dinate the control goals between macroscopic traffic flow
optimization [57] and microscopic vehicle control [58], [59],
[60], [61] and to efficiently solve the computational task
allocation problem between the server and vehicle sides.
There is an inherent interplay between the two compo-
nents, as the Speed Planner informs the Vehicle Controller
of downstream events, and the vehicles are instrumented
to report observations to the server for data aggregation.

Use of modular design
A modular structure is used for two important purposes:
(1) to facilitate a diversity of controller design approaches,
and (2) to enable a heterogeneous vehicle fleet with differ-
ent sensing and actuation capabilities.

As long as each controller utilizes the available inter-
faces, it is technically straightforward to exchange different
controllers when using a modular design. This decision
allows us to support a wide range of expertise from our
team who may explore many different designs, each with
a different technical focus or approach. While there may be
subtleties for stability, convergence, and other properties if
integration decisions are made strictly through type match-
ing, our modular approach mitigates a key challenge: the
dynamics of the roadway and our ability to control it may
not be fully understood until testing begins. Since testing
may only be possible at a scale when we can evaluate
its impact, we will be very close to the full test deadline
when we make final decisions. By embracing a modular
approach, we can use data from tests that concluded less
than 24 hours earlier to decide what controller to run
during the following test.

The fleet of vehicles used in the MVT represented 3
different years, makes, and models. The fleet was com-
posed of 2023 Nissan Rogue, 2022 Cadillac XT5, and 2020-
2021 Toyota Rav4. Trade secrets and design differences
between the systems on these vehicles mean that it is not
possible to have a uniform system interface for sensing
and control. For example, although each car we used has
adaptive cruise control which uses forward facing radar
for safety, the data from those sensors were not available
to our system for all vehicle types. Designing a controller
that can work on only one vehicle type may give greater
controllability, but reduces the potential impact of the
design when deployed at a societal scale.

Thus it is a design strength that our system can operate
across vehicles with myriad different sensing and control
modalities. While the interfaces to the Speed Planner re-
main the same, different vehicles will have different im-
plementations that have completely unique characteristics
compared to other vehicles, similar to textbook design
patterns in software engineering for producer/consumer
architectures. This allows a flexibility to adapt to a het-
erogeneous fleet, theoretically opening the door to many
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FIGURE 1 Architectural framework of the MegaController. The hierarchical and modular nature of the design allows for greater flexibility
in design decisions and dealing with varied sensing and actuation capabilities of the heterogeneous fleet. The blue box represents the
centralized Speed Planner unit, and the red boxes represent decentralized Vehicle Controllers, which are vehicle-dependent (that is, each
vehicle has a different control architecture and thus requires a different control paradigm). The components work in concert to achieve
higher level goals of flow smoothing.

other vehicle configurations and constraints.
In the MegaController design, there are two distinct

components:
» A server-side Speed Planner, which is a centralized

planner unit that provides high-level macroscopic
speed suggestions based on periodic state updates
from the distributed vehicles and external macro-
scopic data source, like INRIX employed in this
study. The algorithms deployed on the server-side
are designed to handle computationally-heavy data
aggregation and macro-state tasks.

» A vehicle-side Vehicle Controller, which is a net-
worked decentralized controller [62] that commands
local actuation of the vehicle. The algorithms de-
ployed here take into consideration the target speed
suggested by the server-side planner unit, the latency
of that information, and any observations from the
vehicle’s onboard sensors.

Borrowing conceptually from object-oriented program-
ming, the interfaces are agreed upon a priori, allowing an
abstraction of individual components for ease of design
and testing.
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The design paradigm of the control framework achieves two goals:
hierarchy for task allocation, and modularity for control flexibility.

Speed Planner
The objective of the Speed Planner is to optimize the
overall traffic flow efficiency by providing macroscopic
guiding speeds for AV fleets using realtime traffic data
from multiple heterogeneous sources. While optimality
for our deployment was defined by flow efficiency, our
framework allows for arbitrary objective functions.

The data sources at our disposal are the set of recent
vehicle ping messages from our AV fleet using our custom
hardware and software stack (detailed later in Figure 11),
as well as vehicular velocity data within distinct sections of
highway through INRIX, a provider of live data for traffic,
parking, and other transportation data. INRIX data has
been studied in the literature for its applicability in traffic
estimation, and validated by researchers for its accuracy
using post hoc methods [63]. Utilizing these heterogeneous
data sources presented some key challenges and consider-
ations, namely unknown latency of external data sources
and differences in spatial and temporal resolution of those
data sources when fused with our vehicle message data.
Although the specific aggregation algorithm is not publicly
known, INRIX data latency is explored in [64], which
describes delays between 3-5 minutes, and in some cases
up to 10 minutes. A summary of data specifications can
be found in Table 1.

Data Source: INRIX AV Ping

Period (seconds) 60 1
Latency (seconds) ∼180 negligible
Segment Length (miles) ∼0.5 (varied) N/A
Lateral aggregation Lane averaged Lane specific

TABLE 1 A summary table of the data sources for traffic
state estimation (and subsequent processes). INRIX
aggregates data from a fleet of vehicles on the road. The
AV Ping data come from our own fleet, where each car
posts speeds to the server through an API that contains
speed (from CAN) and positioning (from GPS), as well
as timing and vehicle identity information.

Targeting the challenges, the two main functions of
the Speed Planner are (1) Traffic State Estimation (TSE)
enhancement and (2) the design of the Speed Plan, an
ideal target speed profile. The TSE enhancement module
is designed to eliminate the effects of inherent latency in
the third-party data source and to improve the spatial and
temporal resolution of the input traffic data. The target
design module generates Speed Plans with the goal of

reducing vehicle energy consumption and increasing the
overall throughput of the traffic flow. Various approaches
are utilized to develop the target design module, including
kernel smoothing [50], ODE/PDE-based flow control [39]
and vehicle trajectory optimization [58].

Vehicle Controller
The Vehicle Controller enables each car to use traffic
information provided by the Speed Planner in context with
local state, such as the distance to the vehicle in front,
relative speed, etc. The Vehicle Controller aims to improve
the flow of traffic while ensuring the safety of both the AV
and other vehicles around it.

Input data for the Vehicle Controller are obtained from
the in-vehicle network, and may include other inputs
such as the target speeds from the Speed Planner. A
subset of data from the CAN bus are made available
to the vehicle controller, and vary depending on the
vehicle make/model/year. Realizing control algorithms
on vehicles required new computer hardware, electronics,
and software development [65], [66], [67], [68], [69], [70]
because of the heterogeneity in vehicle data and control
interfaces.

Depending on the vehicle platform, we have ex-
plored options including speed-based control [71], [72],
acceleration-based control [67], [73], and ACC-based con-
trol [41]. Speed-based control was initially explored, but
then deprecated as acceleration based control best matched
desired goals from algorithm designers. The acceleration-
based and ACC-based approaches fit into the overall ar-
chitectural design. Torque-based control (that is, applying
the requisite torque directly to the gears) would be the
most prescriptive control with tightest actuation, but it also
requires a level of CAN bus access that prevents quick
return of the vehicle to stock state. The majority of the
vehicles used in the experiment were stock vehicles that
were later returned to the manufacturer, so all changes
to enable experimental control needed to be minimal and
non-invasive changes to the vehicle. Therefore, for this
deployment, our architecture included two types of control
capabilities on our heterogeneous fleet, which are summa-
rized in Table 2.

Acceleration-based Controller
While acceleration controllers don’t have natural safety
enforcement such as the one speed controllers have, we
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Adaptive Cruise Control Modeling
by Fang-Chieh Chou, Jonathan W. Lee

Adaptive Cruise Control (ACC) is an advanced driver as-
sistance system that automatically operates vehicles at a

set driving speed or keeps a set driving gap with respect to
a leading vehicle. Operation of ACC requires a speed setting
and a gap setting input by the driver. When there is no leading
vehicle, ACC automatically adjusts the vehicle’s driving speed to
the speed setting preset by the driver. When there is a leading
vehicle ahead, the system automatically regulates the gap with
respect to the leading vehicle to a separation set by the driver,
while not driving faster than the speed setting.

An ACC-controlled car therefore be modeled as a dynam-
ical system composed of two control modes: speed-control
mode and gap-control mode. The system switches between
two modes depending on the proximity and speed of a leading
vehicle. When there is no nearby leading vehicle, the system
is in speed-control mode, in which the system tracks the speed
setting. On the other hand, when the system is in gap-control
mode, the system tracks both the leading vehicle speed and the
gap setting.

To model an ACC-controlled car, we used parametric models
for each control mode. Mathematically, the speed-control mode
can be written as

ae = fp(ve , vref) , (S1)

where ae is the acceleration of the ego vehicle, ve is the speed

of the ego vehicle, and vref is the speed setting. fp : R×R → R

is a parametric model of parameters p.
Gap-control mode can be written as

ae = fq (ve , vl , del , gref) , (S2)

where vl is speed of leading vehicle, del is the space gap
between the ego vehicle and the leading vehicle, and gref is the
gap setting. fq : R × R × R × R → R is a parametric model of
parameters q.

To fit parameters p and q for speed-control mode and gap-
control mode, field experiments are carried out using a Nissan
Leaf vehicle equipped for data collection. For the speed-control
mode, data collection is done with a variety of initial speeds and
speed settings so that dynamic responses with different speed
changes can be collected. For the gap-control mode, highway
driving data under different traffic conditions is collected so that
dynamic response over a range of speeds can be covered in
the data set. The collected data is firstly smoothed to reduce
sensor noise. Some outliers of abnormal driving conditions
(for example, temporally near cut-in and cut-out events) are
removed before fitting the models. The model is validated by
comparing the dynamic response of the model in simulation
to the response of the real system in field experiments. While
the models are fitted for the Nissan Leaf, they are assumed
to be acceptable approximations for the ACC systems of other
vehicles in our AV fleet.

Vehicle(s): Toyota RAV4
Nissan Rogue,
Cadillac XT5

Actuation Type: Acceleration ACC

S
en

si
ng

Ego Position ✓ ✓

Ego Speed ✓ ✓

Ego ACC Speed Setting ✓ ✓

Ego ACC Gap Setting ✓ ✓

Leader Space Gap ✓ ✗

Leader Minicar ✓ ✓

Leader Relative Speed ✓ ✗

TABLE 2 A summary table of the sensing and actuation
available to our system, for the heterogeneous vehicle
fleet. Space gap refers to the distance between the
ego vehicle’s front bumper and the leader vehicle’s
rear bumper. The minicar refers to a boolean indication
whether the ego vehicle’s sensors detect the presence
of a leader vehicle (an approximate 80-100 meter max-
imum distance). Relative speed is the leader vehicle’s
speed minus the ego vehicle’s speed.

have found a way to add safety enforcements. Using new
approaches in [74], we demonstrated that it was possible
to constrain unsafe accelerations when they were passed

to the vehicle. This opened the door to use of acceleration-
based control on cars that support it. Acceleration-based
control is a natural analog to how most of us drive: we
press down on the accelerator pedal when we want to go
faster, and we either let off the accelerator, or press the
brake pedal, when we want to go slower.

When making control requests to the car, we provide
a desired input over the vehicle’s CAN, which is inter-
preted by the powertrain and ACC subsystems of the
car. This desired input is not strictly a direct acceleration
command: it is processed by the vehicle’s ACC system
which interprets the commanded acceleration and decides
whether it will meet it (a) by actuating the brake, (b) by
decreasing acceleration through reducing the throttle, (c)
by keeping the throttle constant, or (d) by increasing the
throttle. Examples of how these dynamics from step inputs
have been observed can be found in [71]. The specific input
selected by the car is a function of many different vehicle
dynamics and perhaps even trade secrets for reducing
wear-and-tear of parts, so there is no single mapping or
predictive function that easily codifies the transfer function
of the system once an acceleration is requested.

Using acceleration-based control implicitly adds safety
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challenges, as the controller must ignore all existing ac-
celeration commands from the car—including any accel-
eration commands that come from the safety subsystems
on board. Safety wrappers such as [74] are needed to
prevent rear-end collisions, and additional care must be
taken to evaluate external sensors. Further, environmental
challenges such as lane-changes by other vehicles require
our system to ensure that our dynamics do not inadver-
tently cause their own stop-and-go waves. We decompose
the behavior of this controller into two modes:

» A base controller prescribes a performance-based
desired acceleration under “ideal” conditions. The
base controller is designed to output an acceleration
that satisfies a specific performance-based goal, for
example, reducing energy footprint or minimizing
the magnitude of accelerations. In general, care is
taken during its design-phase to ensure that other as-
pects of the traffic flow are not negatively impacted.
Note that the base controller should still, by design,
be safe and collision-free, under the assumption that
accelerations are actuated perfectly.

» A lane-change recovery controller modulates the
base controller’s desired acceleration in the event
of discontinuities in the lead-vehicle space gap. The
acceleration output of the base controller can change
dramatically if there is a time-discontinuity in the
input signals. Most commonly, this appears in the
form of a lane-change by another vehicle in front
of the ego vehicle. Since a lane-change is out of the
ego vehicle’s control, it can theoretically put the ego
vehicle into an unsafe state if the objective were to
control to a time gap with discontinuous input. This
mode recognizes that discrete changes in the space
gap are not controller failures, so the objective of
this controller is to comfortably return the vehicle
to a safe state where the base controller can resume
actuation.

ACC-based Controller
Another option for controlling vehicles is to update vehi-
cle’s Adaptive Cruise Control (ACC) set points electronically.
This mimics what the driver can do through buttons on
the steering wheel, and has the benefit of keeping the
safety features of the car’s ACC systems in the loop.
This approach is contrasted with the acceleration-based
approach in a few ways, notably:

» The controllability of the system is affected and the
bandwidth of the controller is likely reduced, since
the stock ACC has its own gains and modes.

» The multi-model design features of the acceleration-
based approach (namely the lane-change recovery
controller and safety wrapper) are not needed here,
as those features are built into the stock ACC algo-
rithm.

To understand the changes in controllability, we explored
the vehicle’s ACC dynamics with a goal to make design
decisions on whether rate limits or other constraints on
the input signals would be required for stability or perfor-
mance reasons. Every vehicle make and model equipped
with ACC has its own unique mapping of state space (for
example, ego speed, space gap, leader speed, etc.) and
ACC inputs (speed setting and gap setting) to actuated
acceleration. Architecturally, we take as given that this
model is available for the design of the base ACC con-
troller. For a more detailed discussion of ACC and our
specific approach to obtaining a model for our algorithm
design, see “Adaptive Cruise Control Modeling".

As a result, the only component of the ACC-based
controller that requires specific designing is the base con-
troller. Just as with the acceleration-based controller, the
base controller is performance-based, striving for some
performance goal. Similar design philosophies are applied
as before. Uniquely different, as noted above, is that this
base controller does not need to explicitly consider safety
and vehicle-specific dynamics—the controller design can
implicitly account for the vehicle-specific dynamics by
utilizing the ACC model in a feedback loop.

DESIGN OF CONTROLLER COMPONENTS
Here, we describe in detail how each of the modular com-
ponents was designed. The discussion is in a parallel struc-
ture to the previous section, with particular focus on con-
trollers that were actually implemented for deployment. In
the lifespan of the project, we explored many approaches
for designing the controller. See “MPC controller” and
“Optimized Vehicle Trajectory” for some notable research
and designs that were not deployed but contributed key
concepts that helped the ultimate implementation.

Speed Planner
Based on the hierarchical framework, Figure 5 indicates the
implementation of the speed planner we tested in the MVT.
As introduced in Table 1, INRIX and probe vehicle data
are posted to the central database in different frequencies:
each vehicle makes its post approximately every 1 second,
and a server-side process inserts new data from INRIX
approximately every 60 seconds. It is important to note
that while the INRIX data provides a single speed across all
lanes, the AV pings provide lane-level speed information.

The sequence of events of a Speed Plan publication can
be summarized as follows:

1) Each new INRIX update is combined with historical
INRIX data, and fed into the prediction module.

2) All vehicle observations from the previous 60 sec-
onds are fetched, and fused with the INRIX predic-
tion, to obtain a lane-level traffic state estimate.

3) The lane-level TSE is smoothed with the forward-
kernel average.
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The MegaVanderTest deployed 100 vehicles in November of 2022, and
was the largest coordinated open-road test to smooth traffic flow.

4) Bottleneck identification is performed with the
smoothed lane-level TSE.

5) If a standing bottleneck is identified in the lane, a
deceleration region is prescribed as a buffer segment.
For all other regions, the smoothed lane-level TSE is
used as the lane-level Speed Plan.

6) Publish the Speed Plan for all lanes.
The subsequent sections delve deeper into the intrica-

cies of the TSE Enhancement and Target Design, provid-
ing a comprehensive understanding of the steps outlined
above. Wang et al. [39] provides in-depth methodology
description of the Speed Planner.

TSE Enhancement
The TSE enhancement module comprises two main com-
ponents: the INRIX prediction module and the data fusion
module. The prediction module’s primary role is to min-
imize the latency issues associated with INRIX realtime
data, especially when applied to vehicular control, as
opposed to its standard use for general traffic insights.
The fusion module complements this by integrating re-
altime data from our system’s probe vehicles, enabling a
more detailed, lane-level TSE with enhanced time-space
precision. A detailed mathematical explanation of the TSE
enhancement module for MVT implementation is available
in [39].

To achieve a lane-level TSE with superior spatial detail,
we further segment the INRIX data into smaller units.
After generating the INRIX prediction, it is merged with
realtime data from the system’s controlled vehicles. Given
that each AV communicates with the server at a rate of
1Hz, we receive 60 ping records from each vehicle for
every Speed Plan generation. These records help determine
the average speed of each vehicle over the previous update
period, which then updates the TSE for the respective
sub-segment. Assuming that our drivers consistently stick
to their designated lanes (a behavior largely confirmed
through systematic data review), we can generate lane-
specific TSE estimates by combining vehicle data with
the broader INRIX speed data. When it comes to data
fusion, we give precedence to data from our vehicles over
INRIX data, considering the inherent characteristics of both
sources. Our vehicles gather and relay perception data
through a system that is both observable and controllable,
with quantifiable error and latency as detailed in [79].
In contrast, the INRIX realtime API employs averaging

techniques to forecast over a given period. This method
might introduce inaccuracies at specific points within that
timeframe, which could impact our control execution. The
INRIX system, in essence, operates as a somewhat opaque
system, with its error and latency aspects largely inferred
from provider descriptions. In this paper, we adopt the
following notation to represent the discrete TSE:

{(xj, v̄j), j ∈ J }, (15)

where j represents the index of road segments, xj is the
postmile coordination of the central of road segment j and
v̄j is the average speed of the corresponding road segment
j. Wang et al. [39] details the procedure of data fusion
applied in MVT.

Target Design
This section introduces the Target Design’s main mod-
ules, namely the kernel-based smoothing and the learning-
based buffer design. The kernel smoothing processes the
enhanced TSE at each time step using a chosen kernel to
improve the fuel consumption caused by the shockwave in
a high-density traffic flow. The buffer design utilizes Rein-
forcement Learning (RL) to form a buffer area upstream
of the standing bottleneck with the goal of improving
throughput at the bottleneck. The target speed suggested
by the RL is employed in a mathematical model of traffic,
represented by a strongly coupled Partial and Ordinary
Differential Equation (PDE-ODE). The outcome of this
mathematical model is an identification of traffic density
(t, x) 7→ ρ(t, x). The kernel smoothing then receives this
information for learning the velocity of the next time step.

In kernels smooth module, we rely on enhanced TSE
data to synchronize the driving speeds of automated ve-
hicles. In particular, vehicles are assigned target speed
profiles contingent on traffic state information, which is
shared and common among all AVs.

At any fixed time step t, the desired speed profile
v : R+ × R → R+ is extracted from enhanced TSE
utilizing kernel methods. First, we preprocess the sparse
TSE data by interpolating the discrete data pairs (xi, v̄i) to
a continuous speed profile (t, x) ∈ R+ ×R 7→ v(t, x), as an
approximation of the average speed of a higher granularity
traffic at a position x and at time t. Then, for any fixed time
t = t◦ we obtain the desired speed by applying a kernel
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Macroscopic ODE/PDE models
by Xiaoqian Gong

Here we model the traffic dynamics in the presence of M AVs
and N human-driven vehicles on a single lane from the

microscopic perspective using systems of ordinary differential
equations. We assume that only AVs can be controlled and have
a greater impact on the vehicle population than human-driven
vehicles. Let T > 0 be a fixed time horizon, IM = {1, · · · , M}
and IN = {1, · · · , N} the index sets of AVs and human-
driving vehicles, respectively. Denote by (x , v ) ∈ RN × RN

≥0

and (y , w ) ∈ RM × RM
≥0 the position-velocity vectors of human-

driven vehicles and AVs, respectively. To represent the positions
and velocities of the M AVs during the time interval [0, T ],
we define the time-dependent atomic probability measure on
R × R≥0, also referred to as the empirical measure, as

µM (t ) =
1
M

M

∑
i=1

δ(yi (t ),wi (t )) , t ∈ [0, T ]. (S3)

Alternatively, we can represent solutions as a measure sup-
ported on absolutely continuous trajectories t ∈ [0, T ] 7→
(yi (t ), wi (t )) ∈ R × R≥0, i ∈ IM . Similarly, we use the atomic
measure

µN (t ) =
1
N

N

∑
j=1

δ(xj (t ),vj (t ))
, t ∈ [0, T ] (S4)

to track the positions and velocities of the N human-driven
vehicles during the time interval [0, T ]. The dynamics of the
M + N vehicles is given as follows:

ẏi = wi ,

ẇi = (H1 ∗1 (µN + µM ) + H2 ∗ (µN + µM )) (yi , wi ) + ui , i ∈ IM ,

ẋj = vj ,

v̇j = (H1 ∗1 (µN + µM ) + H2 ∗ (µN + µM )) (xj , vj ) , j ∈ IN ,
(S5)

where the convolution kernels H1 : R × R≥0 → R and H2 : R ×
R → R represents a microscopic model, such as Opti-
mal Velocity [75], Follow-the-Leader [76] or a combination of
them [77]. Here ∗1 is the convolution concerning the first
variable, and ui : [0, T ] → R are measurable controls for
i ∈ IM influencing the time-evolution of AVs. Given initial data
(x (0), v (0), y (0), w (0)) = (x0, v0, y0, w0) ∈ RN × RN

≥0 × RM ×
RM

≥0, the existence and uniqueness of solutions to system
(S5) can be proved using Carathéodory theorem. This is a
consequence of the fact that the two convolution kernels H1

are locally Lipschitz with sub-linear growth. For more detailed
discussions, we refer the readers to [S1].

Now we consider modeling mixed traffic dynamics when
the number of human-driven vehicles is much greater than the

number of AVs. This allows us to pass to the mean-field limit
of the system (S5) with the number of human-driven vehicles
formally going to infinity, that is N → ∞. The mean-field limit
of the system (S5 is given by a Vlasov-type PDE coupled with a
system of controlled ODEs. The Vlasov-type PDE describes the
evolution of the density of human-driven vehicles as a measure
and the ODEs describe the controlled behavior of the M AVs.
Specifically, the interaction between M AVs and the human-
driven vehicles can be modeled using the following system:

ẏi = wi ,

ẇi = (H1 ∗1 (µ + µM ) + H2 ∗ (µ + µM )) (yi , wi ) + ui , i ∈ IM ,

∂t µ + v ∂x µ + ∂v ((H1 ∗1 (µ + µM ) + H2 ∗ (µ + µM )) µ) = 0,
(S6)

where (y , w ) : t ∈ [0, T ] 7→ (y (t ), w (t )) ∈ RM × RM
≥0 is the

position-velocity vector of the M AVs, µM is defined as in (S3)
tracking the position and velocity of the M AVs, H1 : R × R+ →
R, H2 : R × R → R are locally Lipschitz convolution kernels
with sub-linear growth, ∗1 is the convolution with respect to
the first variable and µ ∈ P(R × R≥0) is a measure on
R × R≥0 representing the density distribution of the human-
driven vehicles in position and velocity.

The rigorous limit process connecting the finite-dimensional
system of ODEs (S5) to an infinite-dimensional system with cou-
pled Vlasov-type partial differential equation (PDE) and ODEs
(S6) was proved in [S2] using Wasserstein distance.

In addition, one can use finite-dimensional hybrid systems
to model multi-lane, multi-class traffic dynamics with M AVs
and N human-driven vehicles on an open stretch of the road
with m lanes. The hybrid nature of the model is based on the
vehicles’ continuous dynamics and the discrete events due to
the vehicle’s lane-changing maneuvers. The mean-field limit of
the finite-dimensional hybrid system is an infinite-dimensional
hybrid system containing a Vlasov-type PDE with a source term,
ODEs, and discrete events caused by the lane-changing behav-
ior of the AVs. For the rigorous derivation of the mean-field limit
of the finite-dimensional hybrid system, please see [S3].

REFERENCES
[S1] B. Piccoli and F. Rossi, "Transport Equation with Nonlocal Velocity
in Wasserstein Spaces: Convergence of Numerical Schemes" Acta Ap-
plicandae Mathematicae volume 124, pages 73–105 (2013).
[S2] M. Fornasier, B. Piccoli, and F. Rossi, “Mean-field sparse optimal
control,” Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, vol. 372, no. 2028, p. 20130400,
2014.
[S3] X. Gong, B. Piccoli and G. Visconti, "Mean-Field of Optimal Control
Problems for Hybrid Model of Multilane Traffic," in IEEE Control Systems
Letters, vol. 5, no. 6, pp. 1964-1969, Dec. 2021, doi: 10.1109/LC-
SYS.2020.3046540.
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Optimal control of measure PDEs
by Xiaoqian Gong

In this section, our goal is to investigate the optimal control
problem (OCP) of multi-class traffic consisting of AVs and

human-driven vehicles on a single lane. In applications, it aims
to minimize congestion, energy consumption, or travel delays,
by adding controls on AVs, rather than controlling all vehicles in
the population.

Let us again assume that we have a small number of M AVs
that have a large impact on the vehicle population and a fixed
large number of N human-driven vehicles that have a small
impact on the vehicle population. Let T > 0 be a fixed time
horizon. We choose controls u ∈ L1((0, T ),U ), where U is a
fixed nonempty compact subset of RM . We model the situation
by solving the following finite-dimensional optimization problem:

min
u∈L1((0,T ),U )

FN (u) =
∫ T

0

{
L(yN (t ), wN (t ), µN (t )) +

M

∑
i=1

|ui (t )|
M

}
dt ,

(S7)

where L(·) is a suitable continuous map in its arguments,
µN is the atomic probability measure tracking the positions
x and velocities v of the N human-driven vehicles as de-
fined in (S4), and the position-velocity vectors (yN , wN ) and
(x , v ) satisfies the dynamics (S5) with given initial datum
(x (0), v (0), yN (0), wN (0)) = (x0, v0, yN ,0, wN0 ) ∈ RN × RN

≥0 ×
RM × RM

≥0 and control u ∈ L1((0, T ),U ). Note that we added
the subscript N to the AVs’ position-velocity vector (y , w ) in-
dicating the dependence of the AVs’ positions and velocities
on the number of human-driven vehicles N . The existence of
optimal control for the finite-dimensional optimization problem
(S7) was proved in [S1].

The mean-field limit of the finite-dimensional system (S5)

was given by system (S6) coupled with Vlasov-type PDE and
ODEs when the number of human-driven vehicle goes to infinity,
that is, N → ∞. Correspondingly, we introduce the following
infinite-dimensional optimization problem:

min
u∈L1((0,T ),U )

F (u) =
∫ T

0

{
L(y (t ), w (t ), µ(t )) +

M

∑
i=1

|ui (t )|
M

}
dt ,

(S8)

where L(·) is a suitable continuous map in its arguments,
(y , w , µ) is the unique solution to system (S6) with given ini-
tial condition (y 0, w 0, µ0) ∈ RM × RM

≥0 × P(R × R≥0) (µ0 is
compactly supported) and control u ∈ L1((0, T ),U ).

It turns out that the cost functional FN in (S7) Γ− converges
to the functional F in (S8) as N → ∞. This leads to the existence
of optimal controls for the infinite-dimensional OCP (S8). In fact,
the solutions of the finite-dimensional OCP (S7) converge to the
optimal controls for the infinite-dimensional OCP (S8). For more
details, please see [S1].

Furthermore, for multi-lane and multi-class traffic dynamics,
we can study the mean-field limit of an OCP of a finite dimen-
sional hybrid systems, which is given by an OCP of an infinite-
dimensional hybrid system. The existence of optimal control for
the OCP associated with the infinite-dimensional hybrid system
is again due to a Γ− convergence result. For more detailed
discussion, please see [S2].

REFERENCES
[S1] M. Fornasier, B. Piccoli, and F. Rossi, “Mean-field sparse optimal
control,” Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, vol. 372, no. 2028, p. 20130400,
2014.
[S2] X. Gong, B. Piccoli, and G. Visconti, “Mean-field limit of a hy-
brid system for multi-lane multi-class traffic,” 2021. [Online] Available:
https://arxiv.org/abs/2007.14655.

function K(·) at a position x = xα:

v(t◦, xα) =

∫ xα+w
x=xα

K(xα, x)v(t◦, x)dx∫ xα+w
x=xα

K(xα, x)dx
, (16)

where w is the width of the estimation window. Many
different kernel functions, such as Gaussian kernel, Tri-
angular kernel, Quartic kernel, Uniform kernel etc., can
be chosen. For the purposes of this paper, we consider a
uniform kernel, the simplest of such mapping. The desired
speed profile at a position xα is accordingly defined as:

v(t◦, xα) =

∫ xα+w
x=xα

v(t◦, x)dx

w
. (17)

When human drivers observe a gap between their
vehicle and the one preceding, they tend to accelerate
to close the distance. Our proposed desired speed profile
aims to slow down in advance, although not excessively,
to create a gap from the preceding vehicle. This approach

takes into account the information provided by the TSE,
which indicates the presence of congestion in the nearby
downstream area. The proposed desired speed profile is
adaptive to traffic states and offers relative robustness, as
it only requires one parameter, w, to tune.

For buffer design, we consider the interval I ⊂ R as
the region of interest. In addition, we consider a subregion
Ic ⊂ I as a congested area. The idea is to determine the
controlled vehicle target speed at a time step t◦, denoted
by u(t◦, x), such that the density ρ(t, x) for x ∈ Ic and
t ≥ t◦ is distributed uniformly through the region I .
Determining the controlled vehicle’s target speed will be
done in the following steps: (i) Designing a target speed
u(t◦, x), given the input v(t◦, x) from kernel smoothing
step, (ii) identifying the density (t, x) ∈ R+ × I 7→ ρ(t, x),
given the target speed of the controlled vehicle, employing
a strongly coupled PDE-ODE model of traffic flow, (iii)
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MPC controller
by Fangyu Wu

Stop-and-go waves, characterized by periods of motion fol-
lowed by abrupt halts, present significant challenges in

traffic control and vehicular automation. To address this issue,
we consider Model Predictive Control (MPC), a popular optimal
control method [78]. The appeal of MPC lies in its ability
to translate a typically discrete-time control task into a finite-
dimensional optimization problem.

At each discrete time step i , the optimization problem ob-
tains an estimate of the initial state of the plant. It then computes
an optimal sequence of control over a specified planning hori-
zon. Only the first control sequence is dispatched for actuation,
with this cycle repeating until task completion.

We denote the state and input of the plant as x ∈ Rn and
u ∈ Rm respectively. The discrete-time dynamics is expressed
as xi+1 = f (xi , ui ), where f : Rn × Rm → Rn . The initial state,
x0, equals xinit. The control task imposes the following state and
actuation constraints: x ∈ X , u ∈ U .

The objective of MPC is to minimize the cost function l =

∑N−1
i=0 ℓ(xi , ui ) + ℓf (xN ). This function measures the cumulative

effect of state and control inputs, with ℓ, ℓf : Rn × Rm → R. An-
alytically, the MPC entails to solving the following optimization
at each time step:

min
xi , ui

N−1

∑
i=0

ℓ(xi , ui ) + ℓf (xN )

s.t. x0 = xinit,

xi+1 = f (xi , ui ), i = 0, . . . , N − 1,

xi ∈ X , i = 1, . . . , N ,

ui ∈ U , i = 0, . . . , N − 1.

(S9)

Upon each iteration, the MPC accepts xinit as input and gener-
ates u0 as output. This feedback control process continues in a

receding horizon manner until the task is terminated.
For the CIRCLES project, our team has developed an MPC

that adopts a linearly constrained quadratic programming for-
mulation, as demonstrated in [S1]. This control method primarily
focuses on the longitudinal dynamics of the ego vehicle, defined
as the vehicle controlled by the algorithm. The state comprises
the vehicle’s position and velocity, and the control input is its
acceleration.

The imposed state constraints ensure that the ego vehicle
neither collides with nor overtakes the predicted position of the
lead vehicle. They also enforce a maximum road speed limit.
Concurrently, input constraints set upper and lower bounds on
acceleration. The MPC’s objective is to minimize the sum of
the L2 norm on acceleration. This objective leads to a standard
convex quadratic programming problem, which is solvable by
widely available solvers.

The primary challenge associated with employing MPC for
wave attenuation lies in accurately predicting the lead vehicle’s
longitudinal position across a substantial planning horizon. To
optimally smooth traffic waves, it is imperative that this planning
horizon aligns with both the spatial and temporal scales of the
wave.

To overcome this challenge, our approach incorporates a
realtime map service for long-term prediction and leverages in-
stantaneous acceleration extrapolation for short-term forecast-
ing. This dual predictive strategy serves two critical functions:
the long-term predictions guide the ego vehicle to effectively
dampen the traffic waves, while the short-term forecasts act as
safeguards, preventing potential collisions with the lead vehicle.

REFERENCES
[S1] F. Wu & A. Bayen, “A Hierarchical MPC Approach to Car-Following
via Linearly Constrained Quadratic Programming,” IEEE Control Systems
Letters, vol. 7, pp. 532-537, 2022.

Evaluation step in which using the density, the speed
profile will be updated by smoothing kernel.

Paper [39] provides details of the procedure introduced
above.

Vehicle Controller
Recall in the architectural design of the controller, the
Vehicle Controller layer features two distinct methods for
actuating the vehicle: acceleration-based control and ACC-
based control. Here, we will discuss component implemen-
tations prepared for both options.

Acceleration-Based Controller: Base Control
The acceleration-based controller requires a baseline con-
troller to use under normal and emergency operating con-
ditions, and a lane-change recovery controller to behave

smoothly when cut-ins and cut-outs take place.
The base controller is an explicit, mathematically-

defined controller designed to reach and keep an ideal
target speed without being trapped in the stop-and-go
wave. These two goals are somewhat antagonistic: a naive
approach consisting in following the ideal target speed
(unless it is unsafe to do so) may result in braking at the
same time and with a comparable amplitude as the leading
car when caught in the wave.

To address this, the base controller has an anticipation
mechanism based on a paradigm that can be summarized
as “act swiftly but slightly,” which reduces variability in
acceleration. It is comprised of three key components:
target, anticipation, and safety. The target component in-
fers an ideal target speed for each specific AV based on
inputs from the Speed Planner and from the local data
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Optimized Vehicle Trajectory
by Arwa AlAnqary

To gain more insights into the car-following task and to
create a baseline for performance benchmark of control

algorithms, we propose an optimal control formulation of the
problem. We consider a mixed-autonomy platoon of vehicles
driving on a single lane following a leader with pre-specified
trajectory over a fixed interval [0, T ]. The aim is to find the
optimal control signal for all automated vehicles in the platoon
to minimize an the platoon’s energy consumption.

Optimal Control Problem
We consider a mixed autonomy platoon of M AVs, N human
vehicles (HVs), and a leader vehicle. The AVs are controlled in
their acceleration, the HVs’ acceleration is governed by a car-
following model (CFM) A : R2 × R2

≥0 → R, and the leader tra-
jectory of the leader is specified by its position xℓ(t ) and velocity
vℓ(t ). We index the vehicles in the platoon from front to back
with i = 0 being the leader vehicle. Let u(t ), x(t ), v(t ),∈ RN+M

be the control, position, and velocity vectors, respectively. Given
initial value vectors x0 and v0, the platoon dynamics are gov-
erned by the following system of ODEs

ẋi (t ) = vi (t ), i ∈ I \ {0} ,

v̇i (t ) = A
(
xi (t ), xi−1(t ), vi (t ), vi−1(t )

)
i ∈ Ih ,

v̇i (t ) = ui (t ) i ∈ Ia ,

(S10)

where I = {0, 1, . . . , M +N}, Ia and Ih are the sets of indices of
the AVs and HVs, respectively.

We use Bando-follow-the-leader CFM [75] for the HVs in the
platoon. The model describes the acceleration of the vehicle as
a function of its space gap, velocity, and relative velocity. For
parameters α, β, k , d , and car length l , we have

A(xℓ, x , vℓ, v ) = α
(
V (xℓ − x − l )− v

)
+ β

vℓ−v
(x ℓ−x−l )2

, (S11)

where

V (h) = vmax
tanh(kh−d )+tanh(l+d )

1+tanh(l+d ) . (S12)

Next, we define the set of admissible controllers as the set
of functions u : [0, T ] 7→ R that satisfy certain conditions: (1)
the controllers can only be applied to the AVs, and they are
bounded; (2) the AVs can not drive backwards; (3) the AVs
remain within an allowable space gap envelope.

Lastly, we define the the objective functional of the optimal
control problem (OCP) as the L2 norm of the acceleration of all
the vehicles in the platoon. We use this as a simple proxy of the
fuel consumption of the vehicles.

Based on the above, we formulate the following OCP

inf
u

∫ T

0
∑
i∈Ia

u2
i (t ) + ∑

i∈Ih

(
A(xi−1(t ), xi (t ), vi−1(t ), vi (t ))

)2dt ,

(S13)
where (x, v) satisfies Equation (S10) and ∀i ∈ Ia , ∀t ∈ [0, T ]

hminvi (t ) + dmin ≤ xi−1(t )− xi (t )− l ,

hmaxvi (t ) + dmax ≥ xi−1(t )− xi (t )− l ,

vi (t ) ≥ 0 ,

(S14)

where hmin and hmax are bounds on the allowable time gap, and
dmin and dmax are the allowable minimum and maximum space
gap at zero velocity.

To solve this optimization problem we parameterize the
controls using piece-wise constant functions. This renders a
finite dimensional optimization problem that we solve by means
of gradient descent. We compute the analytical gradients of the
problem using the adjoint formulation. For further details see
[S1].

Numerical Simulation
We apply the proposed approach to a platoon with one AV
following an empirical leader trajectory. This trajectory exhibits
stop-and-go waves. We show the simulation results in Figure
S1. By introducing one AV, we achieve up to 10% reduction in
the fuel consumption compared to the baseline of full human-
driven platoon. We apply the same approach sequentially to
multiple AVs in a larger platoon. In Figure S2 we show the time-
space diagrams for the baseline platoon compared to one with
8 AVs which achieves 24% reduction in the fuel consumption.

FIGURE S1 Trajectories of different platoons following the
considered leader. Platoon size: 0 HVs (top row), 10 HVs
(middle row), and 20 HVs (bottom row). The dashed lines in
the space gap plots represent the feasible space gap profile.
By introducing one AV behind the leader, we can achieve up to
10% reduction in the energy consumption compared to the fully
human-driven platoon.
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FIGURE S2 Time-space diagrams showing the effect of intro-
ducing 8 AVs with trajectories optimized using the proposed

approach (right) and comparing it with a baseline of a full
human-driven platoon (left). The introduction of the AVs damp-
ens the propagation of stop-and-go waves that appear in the
leader’s trajectory. It also achieves 24% reduction in the fuel
consumption compared to the baseline.
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FIGURE 4 The Markov Decision Process that RL is based on.
An agent exists in an environment and repeatedly chooses action
based upon a state and receives rewards, which then informs the
agent on the value of the state and action pair.

available. The anticipation component is an MPC module
that aims to anticipate the leader’s behavior based on its
current acceleration. This enhances the controller’s ability
to follow the target speed effectively. The safety component
is a safety module, that has priority over all the other
components and ensures that the AV remains safe at all
times. Since car-following models never represent traffic
perfectly (see for instance [80], [81]), it is important that the
safety module, at least, is independent of the mathematical
model used to model vehicle behavior.

The mathematical expression of the commanded accel-
eration is given by

acmd = min(asafe, atarget, aMPC) , (18)

where asafe, atarget, and aMPC correspond to the safety, target,
and the MPC-based anticipation components. The safety
component is given by

asafe(t) = −k(v(t)− vsafe(t)) + v̇safe(t) ,

vsafe(t) =

√√√√2|amin|
(

h(t)− s0 +
1
2

v2
lead(t)
|al,min|

)
,

(19)

where k is a positive parameter, v is the velocity of the ego
vehicle, s0 is safety distance, h is the space gap, vlead is the
leader vehicle velocity and al,min is the minimal possible
leader vehicle acceleration (so maximal deceleration), and
amin the minimal possible ego acceleration.

The target component is defined by

atarget(t) = −k(v(t)− vtarget(t)) , (20)

where vtarget is an inferred ideal speed obtained either from
the speed planner when available or by integrating local
measurements.

The MPC-based anticipation component aMPC is given

FIGURE 5 Data pipeline and major function modules of Speed
Planner. At the beginning of each update, the Speed Planner ex-
tracts a combination of macroscopic TSE and vehicle observations
from the corresponding factual tables (fact_inrix_estimate,
fact_vehicle_ping) in the database to calculate the target
speed profile. The raw TSE is used as the input of the pre-
diction module, of which the output is fused with vehicle ob-
servations. The fusion is then smoothed and used in the buffer
design module, of which the output is saved into the database
(fact_speed_planner) and published as the target speed pro-
file.
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Congestion induces a reduction in system efficiency due to the uneven
distribution of traffic density in the time-space domain.

by

aMPC(t) =



amin. brake(h(t), v(t), vlead(t), alead(t)),

if P1 > 0, alead(t) < 0

aleadv(t)/vlead(t),

if P1 ≤ 0 and P2 ≥ 0, alead(t) < 0

alead −
(v(t)− vlead(t))2

2(h(t)− s0)
,

if P1 ≤ 0 and P2 < 0, alead(t) < 0

alead −
(v(t)− vlead(t))2

2(h(t)− s0)
,

if P2 < 0, alead(t) ≥ 0,

min(amax, alead(t)(1 + k2(vlead(t)− v(t))),

otherwise.
(21)

where, as in (19), h is the space gap and s0 the safety
distance, and k2 is a positive constant, alead is the leader
vehicle acceleration, amax is the maximal possible acceler-
ation of the ego vehicle. The terms amin. brake, P1, and P2
are given by

amin. brake(h(t), v(t), vlead(t), alead(t))

= −
(

h(t)− s0 +
1
2

v2
lead(t)

−alead(t)

)−1
(v(t))2

2
,

P1 = amin. brake(h(t), v(t), vlead(t), alead(t))

− alead(t)v(t)/vlead(t) ,

P2 = vlead(t)− v(t) .

(22)

Further details of this controller can be found in [82].

Acceleration-Based Controller: Lane-Change
The design of Lane-Change Recovery Controller relies on
global traffic information as well as local traffic states, such
as the space gap to the leader vehicle and the relative
velocity. The event of lane changing of the leader vehicle
creates a discontinuity in the observed local state. Such
discontinuities can translate to sudden, large jumps in the
controller output, causing large jerk values. This sudden
jump in the controller output might be necessary to avoid
collision (for example, if a vehicle cuts-in in front of the
AV and has low relative velocity). However, in many cases,
these jumps are byproducts of the discontinuity in the ob-
servation and can be avoided without creating additional
safety threats. To remedy this effect of lane-changes in
such conditions, we designed a simple lane-change han-
dling mechanism that treats the main acceleration-based
controller as a black box and makes minimal assumptions

about it. Essentially, the mechanism works by detecting
the event of lane changing, assessing the safety conditions
created by the event, and (when appropriate) smoothing
the output of the controller.

We assume discrete observations with fixed frequency.
At a step k, we denote the ego velocity vk , the relative
velocity ∆vk , the space gap sk , the output of the main
controller ak , and the actual acceleration input to the
vehicle uk . If the lane-change mechanism is not active, we
have uk = ak .

In order to design this mechanism, we make a few
natural assumptions about the behavior of the underlying
controller. We assume that the controller is a continuous
and non-decreasing function of the leader’s states (that is,
the space gap sk and relative velocity ∆vk). We also assume
that the main controller encodes its own safety measures as
the lane-change handling mechanism does not provide any
additional safety measures. Beyond these assumptions, the
exact form of the main controller is treated as a black box.

We impose multiple criteria for the lane-change han-
dling mechanism to take effect:

1) a lane-change event is detected—this is done by
detecting a discontinuity in the space gap to the
leader vehicle;

2) the lane-change event is significant—this is measured
by the amount of jerk it causes;

3) the lane-change event does not cause safety threats—
this is measured by the time to collision (TTC) (if
∆vk < 0) or time gap (if ∆vk ≥ 0) at the lane-change
event.

When the lane-change mechanism is activated, it smooths
the acceleration by taking a convex combination of the
main controller output at the current step and the actual
acceleration command in the previous step:

uk = akuk−1 + (1 − ak)ak . (23)

Here 0 ≤ ak < 1 is a smoothing factor where larger values
mean smoother acceleration change. Here we consider a
time-varying ak whose value is a non-decreasing function
of the relative velocity and time headway at step k. The
rationale for this modeling choice is to make the smoothing
effect stronger the less critical the situation is (that is, larger
space gap and relative velocity). The smoothing factor has
the following functional form:

ak = c ·
(

f1

(
sk
vk

))
+ (1 − c) · f2(∆vk , sk) . (24)
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It depends on the time headway through the function

f1

(
sk
vk

)
= tanh

(
t⋆ · sk

vk

)
(25)

where the parameter t⋆ is chosen such then the function is
close to 1 when the time headway sk

∆vk
≥ hsafe, where hsafe

is an acceptable safety time headway. The smoothing factor
depends on the relative velocity through the function

f2(∆vk , sk) =

 1
2 tanh

(
∆v⋆ · sk

|∆vk |

)
+ 1

2 ∆vk < 0
1
2 tanh (∆vk) +

1
2 ∆vk ≥ 0

(26)

where the parameter ∆v⋆ is selected such that the function
value is close to 0 when the time to collision sk

|∆vk |
≤ Csafe,

where Csafe is an acceptable safety time to collision. Con-
cretely, we use hsafe = 2s, Csafe = 4.5s, t⋆ = 1.32 and
∆v⋆ = 10.3. The parameters c = 0.75 is chosen by testing
on multiple trajectories and lane-change scenarios.

Finally, the lane-change mechanism is deactivated when
the main controller acceleration becomes close enough to
the output acceleration

|ak − uk | ≤ ϵ . (27)

An example of this mechanism is depicted in Figure 6.
In the figure, the dashed red line indicates the lane-
change event (cut-in) happening at around 14 seconds. The
acceleration profile of the main controller (shown in gray in
the bottom left panel) decelerates heavily in reaction to the
lane-change. This event is detected and considered safe by
the lane-change recovery controller which remained active
for 2.9 seconds during which it smoothed the acceleration
profile significantly and removed the unnecessary jerk
cause by the lane-change.

ACC-Based Controller
The ACC-based controller is the version of the controller
that was ultimately deployed on 97 of the 100 vehicles
during the final MVT. The crucial distinction between the
ACC-based controller and the acceleration-based controller
introduced in the prior section is the controller’s output.
The ACC-based controller, rather than providing an accel-
eration to actuate, provides outputs setpoints for the AV’s
native ACC system, which controls the AV’s longitudinal
movements based on those setpoints. We use the stock
ACC system’s safety assurances and lane-change handling.
Thus while this provides a less direct form of control, it
is more robust in ensuring the safety and smoothness of
the ride. For more information on how the ACC works,
please refer to “Adaptive Cruise Control Modeling.” For
context on the simulator that was developed for training
this algorithm, please refer to “Trajectory Simulator.”

The ACC-based controller is an RL controller that is
trained using Proximal Policy Optimization [83]. Elements
of training the Markov Decision Process (MDP) prob-
lem [84] are described below:
Observation Space

FIGURE 6 An example of the effect of the lane-change handling
mechanism on a real-world trajectory in the event of a cut-in. Top
left : lane-change event is detected and considered safe so the lane-
change recovery controller was active for 2.9s. Top right : a car cuts-
in in front of the ego vehicle at a headway of 65m. Bottom left: the
main controller commanded acceleration drops sharply due to the
lane-change event causing a large jerk value, but the lane-change
controller smooths out this drop in the acceleration. Bottom right:
The relative velocity is large enough at the lane-change allowing
the controller to be active.

» v, velocity of the AV.
» vs, target speed given by the Speed Planner.
» l, a “minicar” flag that indicates whether there is

a leader vehicle detected, nominally within 80 me-
ters (dubbed as such due to the miniature car icon
that appears in the dashboard when the leader is
detected).

» s, the current ACC speed setting
» g, the current ACC gap setting

Action Space
» The requested ACC speed setting, which our on-

board computer will realize in a series of button
presses (see Figure 7). The speed setting dictates the
maximum speed at which the ACC can drive.

» The requested ACC gap setting, which the onboard
computer will realize with priority over the speed
setting. The gap setting takes on three bars between
one and three, with each bar indicating a higher
allowable gap. Each bar roughly corresponds to con-
stant time gaps of 1.2, 1.5, and 2.0 seconds.

In addition, a clipping mechanism was used to ensure
controller safety and social acceptability, particularly in the
absence of leader state information. The post facto lower
and upper bounds placed on the speed setting output
are based on the average speed of the ego vehicle during
the last one second (ten timesteps, with 0 mph and null
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FIGURE 7 A photograph of a Nissan Rogue’s steering wheel
buttons that control the vehicle’s ACC. The ACC system is turned
on by manually pressing the blue icon on the far right. Through our
vehicle interfacing efforts, we are able to electronically press the +
and − buttons to toggle the ACC speed setting up 1 mph and down
1 mph, respectively, or hold them to increment by 5 mph. The three
ACC gap settings are rotated through by pressing the button on the
bottom right.

observations omitted):

vlower =
1
10

10

∑
i=1

vi − 15mph ,

vupper =
1
10

10

∑
i=1

vi + 5mph ,

(28)

where vlower and vupper are the lower and upper bounds
of the clip, respectively. The final clip is executed as:

vclip = min(max(vaction, vlower), vupper)

vfinal = min(max(vclip, 20mph), 73mph) ,
(29)

where vfinal is the final speed setting command and vaction
is the un-normalized speed output, or action, from the
neural net. The 73 mph maximum speed accounts for
modest speeds in excess of the posted speed limit of 70
mph.
Reward Function

The reward function is:
rt =1 − c1a2

t − c2(vav
t − vsp

t )2 + ...

− c3
n

n

∑
i=1

Ei
t − c41hav

t ≤hmin∨hav
t ≥hmax ,

(30)

where c1 − c4 are coefficients, a2
t is an acceleration penalty;

(vav
t − vsp

t )2 is a squared penalty on the difference between
the Speed Planner’s suggested speed and the actual speed;
1
n ∑n

i=1 Ei
t is instantaneous fuel consumption according to

the energy models described in “Vehicle Energy Models;”
and the last indicator term is an intervention penalty that
is invoked if the space gap is less than the minimum space
gap or greater than the maximum space gap.

Further details on the development and design deci-
sions for the state and reward representations and the
intermediate and final policies are given in depth in [41].

CANDIDATE CONTROLLER SELECTION
In the months leading up to the MVT open road test,
our team developed a multitude of candidate controllers,
as seen in previous sections and sidebars. In order to
pare down the list of candidate controllers to be con-
sidered for real-world deployment in November 2022,
various (Speed Planner, ACC-based Vehicle Controller)-
combinations were assessed over a range of simulation
scenarios. The simulation and testing framework follows
from [87] and features an updated simulation methodology
described in “Trajectory Simulator.”

Simulation scenarios included shockwaves, bottlenecks,
and freeflow. Shockwave and freeflow scenarios follow
precisely from the simulator described in “Trajectory Sim-
ulator” and only differ in the leader trajectory (one being
stop-and-go, and the other being all high speed). The
bottleneck scenario features a dynamically imposed speed
limit in a spatial region of the domain. The speed limit
is inversely related to the vehicle density of the region,
and the scaling parameter is tuned to historically observed
speeds in the I-24 region. The bottleneck region is meant to
model a weaving area where a close proximity of on-ramps
and off-ramps results in increased lane-change frequency.

The key performance indicators (KPIs) used to assess
the controllers include fuel economy, throughput, and net-
work speed. Fuel economy is the overall miles per gallon
of all vehicles, and it is computed by applying the energy
model (see “Vehicle Energy Models”) and computing

fuel economy =
∑T

t=0 ∑n
i=1 Ei

t
∑n

i=1 xi , (32)

where the numerator is the total fuel consumed by all
vehicles over all simulation time, and the denominator is
the total distance traveled by all vehicles. The throughput
is measured by counting the number of vehicles crossing
various positions along the highway, normalized by time.
For the shockwave and freeflow simulations, this is taken
to be the straight average of the time-average of five equi-
spaced measurement locations. For the bottleneck, this is
taken to be the steady-state (or final value) at the measure-
ment location just downstream of the bottleneck region.
The network speed KPI is defined as the total distance
traveled by all vehicles divided by the total driving time
of all vehicles.

At the time of our self-imposed “controller freeze” (that
is, the time at which substantial changes to controllers are
no longer allowed), there were two Speed Planner variants
and 12 Vehicle Controller variants. KPI performance for
each of these controllers is shown in Figure 8. The Speed
Planner variants are kernel smooth (just the first three steps
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Vehicle Energy Models
by Nour Khoudari, Sulaiman Almatrudi, Rabie Ramadan, Joy
Carpio, Mengsha Yao, Kenneth Butts, Jonathan W. Lee, Ben-
jamin Seibold

The quantification of the energy demand of the vehicles on
the road, given their trajectories, requires vehicle-specific

energy models that take as an input the velocity profile v (t ) and
the road grade profile θ(t ) and output the resulting energy/fuel
consumption rate f (t ). This project requires the quantification
of the energy demand of traffic flow at large, composed of
many vehicles; and also the use of reinforcement learning
and optimization techniques that minimize (under certain con-
straints) the energy demand of traffic. Thus, the energy models
used should accurately represent different vehicle types on the
road and should average out any local non-convexity behavior
due to gear switching, to avoid trapping the optimizer in local
minima. For that purpose, we use energy models derived from a
systematic model-reduction procedure to generate simple fitted
models. The procedure starts from the fidelity software Au-
tonomie [85], for a number of vehicles, each of which represents
a typical average vehicle of a given class.

VEHICLE PORTFOLIO
To capture the diversity and prevalence of different vehicle types
on US roads we select a representative group of vehicle classes
on which we apply the model-reduction process to derive their
corresponding simplified energy models. Those vehicle classes
are divided into two categories: (1) light-duty vehicles: com-
pact size sedan, midsize sedan, midsize SUV, and Pickup,
and (2) heavy-duty vehicles: Class4PND (Pickup and Delivery)
and Class8Tractor. Each vehicle model represents a class of
vehicles that have comparable weight (with load assumed half
full) and fuel consumption characteristics [S1].

AUTONOMIE AND VIRTUAL CHASSIS DYNAMOMETER
(VCD)
We use the simulation software Autonomie Rev 16SP7 [85]
with a library of energy models for several types of vehicles,
including a detailed plant and controller model for its compo-
nents in MATLAB and Simulink, where the blocks and files can
be customized. To build our models, we use (i) physics-based
vehicle parameters extracted directly from Autonomie, (ii) tuned
parameters extracted in an automated fashion by running the
Autonomie model on test cycles, and (iii) performance maps
computed gear-by-gear on a complete velocity–load phase
space of driving by running Autonomie’s customized vehicle
models on a VCD (those maps are vehicle speed to engine

speed, vehicle speed and wheel force to engine torque, and
engine speed and torque to fuel rate).

SEMI-PRINCIPLED ENERGY MODELS
We build an energy model that is semi-principled in that it has a
physics-based part using Autonomie’s extracted physics-based
vehicle parameters, but it also relies on the maps obtained from
the VCD. Gear scheduling in this model is based on choosing
the feasible gear that yields the minimal fuel consumption,
and the torque converter bypass clutch is assumed open in
the first gear only. In contrast to Autonomie that considers
hysteresis effects, this model yields the fuel consumption rate
(and other outputs) as a direct function of instantaneous velocity
v , acceleration a, and road grade θ.

SIMPLIFIED ENERGY MODELS
A further model-reduction step is conducted by fitting the semi-
principled models into simplified models. Those models have a
simple polynomial structure that can easily be integrated into
optimization and control problems, yet they are highly accurate.
The fuel consumption rate function is

f (v , a, θ) = max
{

β, C(v ) + P(v )a + Q(v )a2
+ + Z (v )θ

}
,

(S31)
where β is the minimum fuel rate set to be zero or a positive con-
stant depending on the fuel cut criteria, a+ = max(− P(v )

2Q(v ) , a),
C(v ) = c0 + c1v + c2v 2 + c3v 3, P(v ) = p0 + p1v + p2v 2,
Q(v ) = q0 + q1v , and Z (v ) = z0 + z1v + z2v 2.

In the above functions, c0 ensures that fuel is being con-
sumed at idle, the c1, c2, and c3 terms can be interpreted as fuel
consumed due to friction and air-drag, the P(v ) term yields fuel
demand due to non-zero accelerations, the Q(v ) term captures
the super-linear trend of fuel rate with respect to a, and the Z (v )
term captures the fuel consumed due to road grade, with the z1

term playing the role of the weight force exerted at θ. Both types
of models are validated, for all different vehicle types, against
Autonomie models as the ground truth on standard EPA drive
cycles [S2] for flat roads and constant road grades drive cycles,
and the results showed that the models are highly accurate
(within 4% for zero road grades). See [86] for more details on
the design of the energy models and corresponding results.

REFERENCES
[S1] Argonne National Laboratory (ANL). “Autonomie Compiled Vehi-
cles,” A technical manual for training in Autonomie, 2020.
[S2] United States Environmental Protection Agency (US EPA). “Dy-
namometer Drive Schedules, 2022.,” https://www.epa.gov/vehicle-and-
fuel-emissions-testing/dynamometer-drive-schedules.
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described in Speed Planner) and kernel smooth with RL
buffer (all steps described in Speed Planner). The Vehicle
Controller variants include:

» Simple: a hand-designed logic-based controller that
largely adheres to the Speed Planner suggestion.

» MicroAccel: the main controller described in
Acceleration-Based Controller with modifications to
output ACC set points. This controller itself has six
variants with different parameter choices.

» RL: the RL controller described in ACC-Based Con-
troller. This controller has five variants with different
training meta-parameter choices.

In the shockwave scenario, an ideal controller should
maximize fuel economy improvements and remain neu-
tral on throughput and network speed. In the bottleneck
scenario, an ideal controller should maximize throughput
improvements and optionally improve or stay neutral on
the other two KPIs. In the freeflow scenario, an ideal
controller will not worsen on any of the KPIs. Given
these criteria, we determined that the HybridRL Vehicle
Controller paired with the Kernel Smooth with RL Buffer
Speed Planner presented the ideal combination for the
ACC-Based vehicles.

OPEN ROAD FIELD OPERATIONAL TEST
Following the controller selection, this section introduces
the implementation details of the selected controllers, ex-
perimental design for the 100 AV deployment, and con-
temporaneous data collection procedures.

Server-side implementation
As indicated in Figure 5, the server-side implementation
includes the construction of the database, the API, and the
Speed Planner algorithm scripts. The database schema is
designed following the star schema data model, consisting
of dimension tables (for storing static metadata) and fact
tables (for storing quantitative data). The tables include:

» dim_vehicle for storing the vehicle metadata, route
and lane assignment;

» dim_inrix_segment for storing INRIX road seg-
ment data for I-24;

» dim_i24_segment for storing finer-grained road
segment data, which supports TSE and Speed Plan
profiles after data fusion;

» fact_vehicle_ping for storing the realtime AV
ping information;

» fact_vehicle_observation for storing extracted
vehicle observations from the AV ping table;

» fact_inrix_estimate for storing realtime INRIX
data;

» fact_speed_planner for storing Speed Plan pro-
files.

The fact_vehicle_ping and fact_inrix_estimate

tables are continually being populated with realtime up-

FIGURE 8 Summary of controller assessments prior to MVT
deployment. Candidate controller components to the MegaCon-
troller were simulated under three scenarios (top: shockwave;
middle: bottleneck; bottom: freeflow) and evaluated against key
performance indicators (fuel economy, throughput, network speed)
relative to a baseline simulation of homogeneous human drivers.
Speed Planner candidates are shown across the top, and Vehicle
Controllers are shown in rows. Key performance indicators are
shown in columns. Results are color-coded from improved (green)
to neutral (white) to worsened (red).

dates at 1Hz. After processing these input data via the
Python-based Speed Planner algorithm, the Speed Plan
is written to the fact_speed_planner table, which is
exposed to the internet via a PHP-based HTTP API.

Vehicle-side implementation
The vehicle-side implementation includes several software
libraries and a mix of custom and off the shelf hardware
components.

In the past decades , vehicles have been gradually
increasing the implementation of the open Controller Area
Network (CAN) protocol for in-vehicle networking com-
munication between various electrical modules. The usage
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Trajectory Simulator
by Nathan Lichtlé

Establishing a robust, representative, and reliable simulation
environment is key for the successful implementation of

our wave-smoothing controllers in autonomous vehicles, as it
ensures their efficient operation across a wide range of traffic
conditions. Our simulator [S1] is based on real human driver
data collected on the highway[S2], and has been extensively
used for designing, training and evaluating the different types
of controls implemented in this work, assessing their safety,
energy-reducing performances, robustness and smoothness.
This sidebar describes the procedure by which highway trajec-
tory data was gathered and a simulator created from it.

ACQUISITION OF DATA
The trajectory dataset [S2] for our study were recorded on a
14.5-kilometer segment of I-24, located southeast of Nashville,
Tennessee. An example recorded speed trajectory profile can
be seen in Figure S3. An instrumented vehicle is used to gather
data which logs vehicle controller area network (CAN) data
through libpanda [65] and GPS information from an in-built
receiver. The CAN data collection comprises measurements
like the speed of the vehicle under consideration (ego vehicle),
the relative speed of the lead vehicle (the vehicle in front), the
instantaneous acceleration, and the space gap (distance from
bumper to bumper).

FIGURE S3 Speed vs. time for one of the dataset trajectories,
exhibiting large acceleration and breaking patterns that can
typically lead to stop-and-go waves.

REFINING RAW DATA
Each drive’s raw data is stored in two separate files: a CAN
data file and a GPS file. The relevant data are extracted from the
CAN file and adjusted to match the GPS time, which is recorded
at 10 Hz. The high-frequency CAN data are downsampled
and interpolated linearly to align with GPS time, whereas low-
frequency CAN data are subjected to linear interpolation to
match the 10 Hz GPS time. GPS position data is used to
calculate the distance traveled and direction. As westbound
data usually demonstrate more consistent congestion, they are
primarily used for training, comprising 60 trajectories, which
translates to 8.8 hours and 772.3 kilometers of driving.

ANALYZING THE DATASET
The trajectory dataset encapsulates a wide variety of traffic
conditions ranging from nearly stationary congested traffic to

maximum speed free-flow traffic, including diverse acceleration
and deceleration patterns associated with stop-and-go traffic.
The example trajectory displayed in Figure S3 demonstrates the
ego vehicle’s quick transitions between low and high speeds.

While the primary interest lies in mitigating high-frequency
waves that are common in congestion, Figure S4 indicates
the tendency of speeds in the training dataset towards the
higher end. Despite the possibility of simplifying the learning
problem by filtering out high-speed data, congestion zones are
often immediately followed by high-speed areas. To ensure
our controller’s competent behavior at high speeds and during
transitions from high to low-speed zones, the training dataset
retains both low and high-speed data.

FIGURE S4 Distribution of speeds in the I-24 dataset.

DEVELOPING THE TRAINING AND EVALUATION
FRAMEWORK
To exploit the gathered data, a single-lane training environment
is designed where an AV follows the trajectory data recorded
from human drivers. The human driver is simulated at the front
of a vehicle platoon, followed by the AV, and then a number
of vehicles operating according to the Intelligent Driver Model
(see “Car-Following Models”). This setup guarantees the growth
of waves in congestion, due to the string-unstable nature of
the chosen IDM parameters. While a comprehensive micro-
simulation of I-24 might allow training with more complex vehicle
interactions, the proposed simulator focuses on realistic driv-
ing dynamics representative of the highway’s wave types and
drivers’ reactions to wave formation. The simulator’s efficiency
is also commendable as it achieves 2000 steps per second,
whereas a micro-simulation of the complete 14-kilometer sec-
tion would be computationally expensive due to the thousands
of vehicles in congestion.

REFERENCES
[S1] N. Lichtlé, E. Vinitsky, M. Nice, B. Seibold, D. Work and A.M. Bayen,
Deploying Traffic Smoothing Cruise Controllers Learned from Tra-
jectory Data, 2022 International Conference on Robotics and Au-
tomation (ICRA), Philadelphia, PA, USA, 2022, pp. 2884-2890, doi:
10.1109/ICRA46639.2022.9811912.
[S2] M. Nice, N. Lichtlé, G. Gumm, M. Roman, E. Vinitsky, S. Elmadani,
M. Bunting, R. Bhadani, K. Jang, G. Gunter, M. Kumar, S. McQuade,
C. Denaro, R. Delorenzo, B. Piccoli, D. Work, A. Bayen, J. Lee, J. Sprin-
kle, and B. Seibold, The I-24 Trajectory Dataset (1.1.1), 2021. Zenodo.
https://doi.org/10.5281/zenodo.6456348
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Car-Following Models
by Nour Khoudari, Benjamin Seibold

Car-following models (CFMs) [88], [51] are systems of or-
dinary differential equations (ODEs) describing the dy-

namics of each vehicle on the road, where drivers react to
the changes in the relative positions of the vehicle ahead. The
ODEs could describe the vehicle velocity only and those are
first-order models, or the velocity and the acceleration and those
are second-order models. Second-order CFMs are of the form

v̇ (t ) = f (s(t ), v (t ), ∆v (t )) , (S33)

where s is the gap to the vehicle ahead measured in meters,
v is the velocity of the vehicle, commonly measured in m/s,
and ∆v is the velocity difference or the approaching rate to the
vehicle ahead, commonly measured in m/s. An elegant CFM is
the Optimal Velocity Model (OVM) [75]

f (s, v , ∆v )OVM = α [V (s)− v ] , (S34)

where the optimal velocity function, V (s), determined by the
gap s to the vehicle ahead, is a positive monotonically increas-
ing function, with s → ∞ asymptote at the speed limit. Some

variations of this model were proposed to avoid car collisions,
an example is the Optimal Velocity Follow the Leader Model
(OVM-FtL):

f (s, v , ∆v )OVM-FtL = α [V (s)− v ] + β

[
∆v
sν

]
, (S35)

where ν is a positive exponent, and β is a positive braking
coefficient (measured in mν/s). Another example of second-
order CFMs is the Intelligent Driver Model (IDM), introduced
in [89] and suitably adapted and used in this work. The IDM
acceleration function is

f (s, v , ∆v )IDM = a

[
1 −

(
v
v0

)δ

−
(

s∗(v , ∆v )
s

)2
]

, (S36)

where s∗(v , ∆v ) = s0 + vT + max{0,v ∆v}
2
√

ab
. Here v0 is the desired

velocity on an empty road (measured in m/s), s0 represents
the minimum spacing between vehicles (measured in m), T
is the minimum possible time gap to reach the vehicle ahead
(measured in s), δ is an acceleration exponent, and a and b
are the maximum vehicle acceleration and minimum desired
comfortable deceleration, respectively (measured in m/s2).

FIGURE 11 CAN firewall and message injection with ROS.
A special CAN interface called the mattHat firewalls messages
between OEM modules at the hardware level, and can replace
blocked messages with third party messages from software with
libpanda. libpanda provides direct CAN recording as well as
verification of CAN data to be sent by checking OEM’s CAN states.
CAN messages can be read and sent through ROS topics provided
by adapters in can_to_ros.

of the CAN bus lets automotive manufacturers use mini-
mal wiring to design complex systems involving anything
from engine diagnostics, infotainment, security, emissions,
and (in more recent years) adaptive cruise control (ACC)

and Lane Keep Assist (LKA). The ACC system on cars
typically involves a sensor module to measure the leading
vehicle dynamics and a separate controller module, which
communicates with the vehicle’s transmission and engine.
Since these modules are physically located in different
parts of the vehicle they communicate using CAN busses,
where listening CAN analyzers can record the information.
Figure 11 shows the method of tapping into a CAN bus
for message reading.

While automotive manufacturers provide information
on the structure of the in-vehicle network in the form
of wiring diagrams, specific information being sent on
the CAN bus is typically a closely guarded secret, likely
due to both trade secrets and safety concerns. However,
some companies (such as comma.ai [90] and Intrepid
Control Systems [91]) are entering the space of custom
vehicle autonomy by selling modules that intercept CAN
messages between these modules and provide their own
inputs based on custom controllers. This is only possible
after spending time decoding messages and reverse engi-
neering the protocols needed to inject custom messages.
Compared to basic CAN reading, Figure 11 shows the
different electrical architecture needed for CAN message
interception and injection between OEM modules.

In this work our solution is based on a similar principle,
however additional protocols on the 2023 Nissan Rogue
(which comprise the vast majority of our control fleet)
prevented the injection of commands, though CAN data
could still be read for realtime controller inputs. Due
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Vehicle Interfacing
by Matthew Bunting

The set of hardware involves both off-the-shelf and cus-
tom components assembled as a stack of Printed Circuit

Boards (PCB). Figure S5 shows the relationship of hardware
components installed in each car.

HARDWARE
A Raspberry Pi 4 served as the main computer to run con-
trollers. This was chosen due to its wide open-source support,
and its availability and low cost. The operating system was 64-
bit Raspbian Lite. We chose Raspbian instead of other Linux
distributions since it was the only actively fully supported version
from the hardware manufacturer.

Attached to the Raspberry PI was an x728 battery backup
Uninterrupted Power Supply (UPS). An experiment lifecycle
began turning on the car and therefore providing power to the
Raspberry Pi, then ended when the vehicle parked and shut off
at our headquarters. The UPS would continue to provide power
to the Pi, and signal that the Pi should stop processed of custom
control and upload the experiment’s data over WiFi.

To provide internet to the Pi during an experiment, needed
for receiving control setpoints, a separate mobile hotspot was
connected to the Pi’s ethernet. Our chosen hotspot was an
industrial grade Cradlepoint IBR900 and IBR600. This hard-
ware setup was shown to be effective for societal-scale experi-
ments [S1].

A uBlox M8 series USB GPS module provided the sys-
tem with positional tracking. This sensor was also used to
synchronize the Raspberry Pi’s system clock to GPS time, to
ensure that later data processing would involve minimal manual
realignment.

The mattHAT served as the interface for the vehicles, with
the majority being a 2023 Nissan Rogue. The only standard
interface on vehicles is the Onboard Diagnostics (OBD) port,
however this only provides useful-yet-minimal data like the Ve-
hicle Identification Number (VIN) While modern vehicles have a
rich set of sensors and actuators using standardized CAN bus
for communication, they are minimally documented to prevent
third parties from interpreting sensors and from sending actua-
tion commands. This leads to a significant effort to decode CAN
signals. While off-the-shelf CAN decoders exist, our solution
had to be custom in order to send low-level electrical signals to
operate the stock ACC unit. This was possible for the Nissan
Rogue by applying an electrical resistance to spoof button
presses, requiring a custom circuit. The mattHAT was designed
with these three communication components in mind, to read
the VIN over OBD, read vehicle sensors and state information
over specific CAN busses, and to send low-level ACC control

commands.

FIGURE S5 The set of hardware installed in each vehicle.

SOFTWARE
libpanda is a low-level C++ library to operate the mattHAT,
written with a focus on data timeliness and low CPU usage [S2].
libpanda abstracted the vehicle interface in the form of an
observer design pattern to easy write software for reading CAN
and GPS data, and to send control commands wither through
CAN message injection or through the mattHAT’s ACC interface.
In addition to low-level operation of the vehicle, libpanda

also features a set of utilities to manage the Raspberry Pi
for functions like automatic data upload, Over-the-Air (OTA)
updates, and reporting system status.
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Using libpanda, a ROS node was designed to translate the
various vehicle functions into the form of ROS topics. A project
named can_to_ros provided pre-written middleware so that
controller designers could use tools like MATLAB’s Simulink to
generate code in the form of C++ to control the vehicle [S3].
can_to_ros was also expanded to handle a heterogeneous
fleet, due to the mixture of models and make of vehicles [S4]
[S5]. In conjunction with can_to_ros and libpanda, a data
analysis tools named bagpy [S6] and strym [S7] were used
to quickly analyze and decode recorded data. Data from the
signal decoding and system characterization process for a 2020
Toyota RAV4 has also been made publicly available [S8].
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FIGURE 13 The mattHat. This custom designed circuit board was
rapidly manufactured for both CAN interfacing and ACC button
command spoofing.

primarily to supply chain issues and additionally to an
inability to inject CAN messages, a custom circuit board
was developed, coined mattHAT (Hardware Attached on
Top). A mattHat can be seen in Figure 13. The mattHAT
acted as a CAN interface and also provided methods
of sending ACC button press commands using custom
circuitry. The board was designed to plug into a Raspberry
Pi 4. Custom wire harness cables were designed and built
for vehicle installation across the 97 Nissan Rogue vehicles,
targeting specific CAN busses related to the vehicle’s ACC

state.
A C++ based library named libpanda [65] was de-

veloped to operate the mattHAT’s CAN interface and
button spoofer as well as record raw CAN and GPS data.
libpanda also supports a USB-based GPS module to
both record the vehicle’s position and to synchronize the
system’s time. A tool named Strym was also developed to
decode and quickly analyze libpanda’s recorded data for
CAN signal decoding and classification [92], [93], [94]. To
allow control designers to easily make use of libpanda,
the Robot Operating System (ROS) was installed on the
Raspberry Pi. A set of ROS nodes were designed in the
software project named can_to_ros [66], [69], which
abstracts various sensors and actuators into a set of ROS
topics. A tool named bagpy was also developed to quickly
process and plot recorded ROS data, in the format of bag-
files [95]. With the infrastructure of ROS in place, control
designers could use modeling software like MATLAB’s
Simulink to design controllers and generate code to greatly
ease controller integration.

libpanda also features a set of auxiliary services to
manage the vehicle at scale. A method to automatically
perform over the air (OTA) updates was implemented so
that vehicles would not need to be manually handled. An
additional server integration named piStatus was built
so that the system could regularly post its status to easily
assess the system’s health. Figure 14 shows headquarters
personnel monitoring piStatus, ensuring vehicles pass
status checks before deployment. piStatus would be
continuously monitored throughout each experiment to
note any hardware issues so that vehicles could undergo
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FIGURE 14 piStatus web interface. Co-author Matthew Bunting
monitors the piStatus page to clear vehicles for experiment
deployment.

maintenance before the next deployment. A shutdown
script also worked in tandem with an off-the-shelf battery-
backup Pi HAT to perform automatic data uploads at
the end of an experimental drive when the vehicle was
shut off. Figure 15 shows a WiFi antenna installed in the
center of the vehicle parking lot for granting each vehicle’s
embedded computer internet access for data upload and
OTA updates. Without these set of services, managing
and maintaining a project at this scale would have been
impossible.

FIGURE 15 Parking lot WiFi antenna. A WiFi antenna is placed in
the center of the vehicle parking lot, enabling OTA data uploads and
software updates for each Raspberry Pi in each vehicle.

I-24 MOTION
The CIRCLES team deployed the vehicle controllers on I-24
southeast of Nashville, TN due to the recent creation of a

new testbed, known as I-24 Mobility Technology Interstate
Observation Network (MOTION) [53], [54]. I-24 MOTION
is a four-mile section of I-24 designed to produce ultra-high
resolution trajectory data of all vehicles on the roadway
for the purposes of traffic science and experimentation on
automated vehicles and traffic management. The system
produces trajectory data (Figure 16) using 276 cameras
(Figure 17) on fixed roadside poles between 110–135ft
tall, to minimize visual occlusion. The debut of the I-
24 MOTION testbed coincided with the live CIRCLES
experiment, for which the testbed is uniquely suited to
gather data on the traffic stream impacts of a fleet of test
vehicles.

Processing of raw video into vehicle trajectories by
I-24 MOTION happens in two stages. 1) A computer
vision pipeline [97], [54] makes the initial vehicle detection
and type classification from the raw video [97], including
vehicle dimensions by using 3-D bounding boxes. Vehicle
classes used by the object detection are: sedan, midsize,
pickup, van, semi, truck, motorcycle. It tracks detected
vehicles across adjacent camera views in the vehicle’s
direction of travel. The computer vision processing is
distributed across ten servers with contiguous groups of
cameras allocated to each. Vehicles are not tracked between
servers, so a vehicle trajectory covering the length of
the testbed consists of at least ten fragments; additional
fragmentation may occur due to unavoidable occlusion
(for example, by overpasses). The computer vision pipeline
also converts image space coordinates (where vehicle de-
tections occur) into a roadway coordinate system using
a homography transformation calibrated every hour to
each camera. 2) Post-processing algorithms [98] first stitch
fragmented trajectories together using an online minimum
cost network flow graph problem. Each trajectory is then
subject to a reconciliation procedure to ensure feasible
and smooth higher order dynamics (acceleration and jerk),
formulated as a quadratic program.

Processing of raw video into vehicle trajectories by I-
24 MOTION happens in two stages. 1) A computer vision
pipeline [97], [99], [100] makes the initial vehicle detec-
tion and type classification from the raw video, including
vehicle dimensions by using 3-D bounding boxes. Vehicle
classes used by the object detection are: sedan, midsize,
pickup, van, semi, truck, motorcycle. It tracks detected
vehicles across adjacent camera views in the vehicle’s
direction of travel. The computer vision processing is
distributed across ten servers with contiguous groups of
cameras allocated to each. Vehicles are not tracked between
servers, so a vehicle trajectory covering the length of
the testbed consists of at least ten fragments; additional
fragmentation may occur due to unavoidable occlusion
(for example, by overpasses). The computer vision pipeline
also converts image space coordinates (where vehicle de-
tections occur) into a roadway coordinate system using
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FIGURE 16 Time (horizontal axis) space (vertical axis) diagram generated by I-24 MOTION [53] and associated visualization library [96]
during the MVT. Vehicle trajectories driving westbound (up) are colored based on the speed of vehicles (green: freeflow to red: congested).
Experiment vehicle trajectories are overlaid in white.

a homography transformation calibrated every hour to
each camera. 2) Post-processing algorithms first stitch frag-
mented trajectories together using an online minimum cost
network flow graph problem [101]. Each trajectory is then
subject to a reconciliation procedure [98] to ensure feasible
and smooth higher order dynamics (acceleration and jerk),
formulated as a quadratic program. A data visualization
library [96] assists with interpreting the datasets generated
by the system.

Due to the critical nature of data from the MVT, the
I-24 MOTION system retained a secure backup of the
experiment data and baseline traffic conditions. Raw I-
24 MOTION imagery is not accessible outside of the I-24
MOTION administrators, per the testbed’s privacy policy.
However, this backup allows re-processing of the video
and/or the raw vehicle detections from the computer
vision pipeline as data generation pipeline advances. The
current released version of the data has gone through re-
processing rounds to address known errors and limita-
tions, including using hourly re-calibrated homography
transformations for camera perspective [100].

Experimental Design
The live traffic experiment took place on I-24 in November
2022. With 100 vehicles to deploy, over 150 drivers were
hired from local colleges, security guards, delivery drivers,
team members’ relatives, and elsewhere. The drivers were
trained to adhere to specific assigned routes and lanes
and to activate our custom ACC system whenever driving
in their assigned lanes. Safety features were implemented
such that the controller would default to stock ACC be-
havior if engaged off of the highway.

The specific routes driven by the AVs were chosen to
maximize the penetration rate where the I-24 MOTION
system [53] would capture the effect on the surrounding
commuters (bulk traffic). Initially, a single-loop route that

would have the AVs circulating from 7:30am to 9:30am
was considered. It was determined that this would likely
cause increased congestion on the Exit 57 off-ramp, leading
to extended queuing and potential spillback onto I-24. For
this reason, we divided our AVs into two groups with
the two different routes partially overlapped on I-24. The
portion of the highway where the experiment happened is
displayed in Figure 18.

The AVs are released at 6:00am in order for all 100
to be deployed by the target time 7:30am. The drivers
are instructed to repeat their driving routes for 2 hours,
or sooner if they wanted a break. On a return trip, they
exit the highway at Exit 60 (Hickory Hollow), to return
to the Field Headquarters parking lot and return their car
keys at a desk before leaving the lot. As AVs return to
the lot for a break, other drivers (already on break) head
down to a queue to come out to the lot when needed,
following instructions from our "airline reservation board"
(Figure 19). With this smoothly running rotation system,
we were able to keep the 100 AVs on the routes during
peak hours, while keeping track of their locations in real
time (Figure 20). For more details about the routes, and
logistical choices made for the experiment, driver training,
the daily schedule, or the penetration rate estimates, see
the article [102].

Data Release
As a part of this publication, we are releasing to the
public a dataset from the MVT. This data release will
include data collected by the AVs as well as the I-24
MOTION [54] system. See also [97], [100], [99] for other
datasets generated by I-24 MOTION.

The data contains GPS and CAN data collected by the
100 AVs from all testing days. The longitudinal position
along the highway is modified post hoc with an offset
to account for systematic positioning error (for example,
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FIGURE 17 Visualization wall in the operation center. The display shows live video feeds from the I-24 MOTION cameras installed along
the highway, as well as a time-space diagram generated from the I-24 MOTION and AV data (see Figure 16 for more details).

caused by placement of the GPS unit within the vehicle).
The offset is determined by finding all likely matches in
the I-24 MOTION dataset, and computing the median
delta. All other data is provided unaltered except for
interpolating onto a resampled, fixed 10Hz time grid. Lane
identification is not provided; rather, the driver’s assigned
lane can reasonably be assumed to be the true lane when
the controller is engaged.

The raw I-24 MOTION trajectory information is pro-
cessed [98], [101] and then is appended with additional
information. Speed and acceleration are inferred from
the longitudinal position (which, as described previously,

is processed to be sufficiently smooth for second-order
derivatives). Road grade information is added via a para-
metric road grade map model. Fuel information, including
various fuel rates and those for reference trajectories, are
appended through the application of fuel rate models (see
“Vehicle Energy Models” and [86]). Fuel rate models are
selected with a one-to-one mapping of vehicle classes to
fuel model classes. For each I-24 MOTION trajectory seg-
ment, a reference trajectory is constructed that matched the
initial and terminal positions and speeds and minimize the
functional maxt a(t) − mint a(t) subject to the additional
constraint v(t) ≥ 0. This functional is a simple vehicle-
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FIGURE 18 Portion of the Interstate 24 (I-24) highway where the
experiment happened, near Nashville, Tennessee, US. The 14.5
kilometers (9 miles) portion approximately spans between Exit 57
and Exit 66B.

independent proxy for the more complicated energy mod-
els constructed in [86], motivated by the following ar-
guments: (a) due to the super-linear growth of fuel rate
with increasing acceleration, peak accelerations should be
minimized; and (b) unnecessarily heavy braking results
in wasted fuel, hence peak braking (which is −mint a(t)
for typical trajectories) should also be minimized. By
Pontryagin’s maximum principle, this generally results in
piecewise-constant acceleration profiles with a jump at the
trajectory’s midpoint in time. Lastly, using the implicit
lane and longitudinal matching with the AV dataset, we
also supply relative distances and vehicle IDs for nearest
upstream/downstream, engaged-or-not AVs to assist in
subsequent analyses.

Further information on the structure of the data will
be provided in the data documentation released with the
data.

RESULTS
The experimental, observational, data collection, and data
processing framework described above generated a large
amount of data, capturing every single vehicle on a high-
way during the deployment of 100 controlled vehicles.
Analogous to previous seminal traffic data sets, such as
NGSIM [103], the new data are expected to inspire and en-
able many subsequent findings. To highlight this potential,
we here present some key first findings and insights, based
on an analysis of the data with a macroscopic perspective.

We construct macroscopically meaningful fields in
time–space, most prominently a field that shows the en-
ergy (in)efficiency of traffic at large on the I-24 highway

segment. This is achieved by applying Edie’s method [104]
on boxes of size ht × hx, where ht = 10s and hx = 200m,
to the I-24 MOTION trajectories to construct the following
fields:

» vehicle density ρ(t, x), as the total vehicle time spent
in each box, divided by the size of the box, ht · hx;

» flow rate q(t, x), as the total distance traveled in each
box, divided by ht · hx; and

» fuel rate density f (t, x), as the total fuel consumed in
each box, divided by ht · hx.

From these fields, other meaningful fields are obtained,
such as the bulk velocity field u(t, x) = q(t, x)/ρ(t, x), the
bulk fuel rate ϕ(t, x) = f (t, x)/ρ(t, x), and the bulk fuel
consumption ψ(t, x) = f (t, x)/q(t, x). The latter quantity
ψ(t, x), measurable for instance in grams per meter, repre-
sents the fuel demand per distance traveled of all vehicles
in the ht × hx vicinity of the position (t, x). Figure 21 shows
ψ(t, x) for two experimental days: Wednesday November
16 and Thursday November 17, 2022. Each plot is overlaid
with the trajectories of all control vehicles. This represents
the first time that a complete time–space diagram of the
energy inefficiency of traffic, based on accurate trajectories
of all vehicles on the roadway, has been provided.

In the same spirit as the purely microscopic Figure 16,
one can, for both days shown in Figure 21, clearly see the
traffic waves traveling backwards along the highway, as
well as the increased fuel consumption incurred in these
waves. The figure also shows the increased fuel demand
in the uphill segment between x = 5km and x = 6km,
and the reduced fuel demand in the downhill segment
thereafter. The AV trajectories are colored red when the
automated controller was activated, and white when the
vehicle was under human control. The two shown test
days were quite different in terms of the engagement rates
of the controllers: on 11/16, the controllers were engaged
38% of all times, while on 11/17, the engagement rate went
up to 78%. This difference was caused by a combination
of increased driver comfort with the automation and a
more reliable communication of traffic information to the
vehicles on 11/17.

Given the low penetration rate of the control vehicles
on the highway, it was not expected that they would
completely smooth out all traffic waves—and the plots in
Figure 21 confirm that expectation. However, the AVs may
still have had some positive contribution on the energy
efficiency of the flow at large. Whether that was in fact
the case, we first note that the macroscopic plots like
in Figure 21 allows for a targeted inspection of different
regions of interest in time-space. For instance, on 11/16,
there is a distinct region of high fuel inefficiency, around
time 08:25:00 and location 5.0km–6.5km; and notably, this
high-fuel region coincides with all AV controller being
inactive. In contrast, on 11/17 such clusters of inactive AVs
did not occur—and the fuel consumption map does not
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FIGURE 19 Driver Assignment Status board. The display is located
in the drivers’ break room and lets drivers know when they should
get ready to drive, and when they should go to the operation center
lobby.

exhibit similarly large high-fuel regions. Another notable
anecdote occurs on 11/16 in the wave that goes through
x = 2.3km at time 07:00:00. First two active AVs notably
dampen the wave; then the wave keeps on growing while
four inactive AVs run through it (at x = 3km); followed by
several active AVs (around x = 4km) notably dampening
the wave again.

Many more quantitative results and plots are available
in the publications of the different teams that contributed
and deployed a controller during the MegaVanderTest [82],
[39], [41]. Since each team deployed their controllers in
different manners, on different vehicles, or at different
scales, the results are not easily comparable—which leads
to interesting analyses from different points of views. Each
team has detailed the process they went through to clean,
parse, and extract relevant information from the data, in
order to estimate their controller’s impact in terms of
energy savings and traffic smoothing. Continued effort
to quantify our vehicles’ overall impact is underway and
planned for future publication(s).

CONCLUSION
This work describes the control architectures and imple-
mentations of a 100 automated vehicle deployment to
improve traffic efficiency on a freeway using a small
fraction of automated vehicles. It is the largest field ex-
periment to use CAVs to regulate the overall traffic flow,
and the deployment strategy enabled algorithms from di-
verse fields spanning model based control to reinforcement
learning. The control strategy presented in this work was
a hierarchical control approach in which the upper level
speed planner provided target velocities to a lower level
control law responsible for performance and safety. These
algorithms were deployed in the largest field experiment

FIGURE 20 Vehicle Tracker System (middle screen). Co-author
Jonathan Lee introduces the display to US DOE stakeholder,
Heather Croteau. Located in the operation center, the realtime lo-
cation, speed, direction, and control status of all deployed vehicles
on the map.

of its kind, on a heterogeneous vehicle fleet using low cost
vehicular instrumentation. The data from the vehicles were
combined with datasets generated from I-24 MOTION [53],
[54], providing a large data resource for further study on
the interaction of control vehicles on bulk traffic flow.
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FIGURE 21 Bulk fuel consumption heatmap in time (horizontal axis) and space (vertical axis), based on I-24 MOTION [53] of all vehicles
(aggregated over all lanes) driving in the Westbound direction with AV trajectories overlaid (white: controller not engaged; red: controller
engaged). Shown are November 16, 2022 (top) and November 17, 2022 (bottom).
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