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From Sim to Real: A Pipeline for Training and
Deploying Traffic Smoothing Cruise Controllers
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Abstract—Designing and validating controllers for connected
and automated vehicles to enhance traffic flow presents significant
challenges, from the complexity of replicating real-world stop-
and-go traffic dynamics in simulation, to the intricacies involved
in transitioning from simulation to actual deployment. In this
work, we present a full pipeline from data collection to controller
deployment. Specifically, we collect 772 kilometers of driving data
from the I-24 in Tennessee, and use it to build a one-lane sim-
ulator, placing simulated vehicles behind real-world trajectories.
Using policy-gradient methods with an asymmetric critic, we
improve fuel efficiency by over 10% when simulating congested
scenarios. Our comprehensive approach includes reinforcement
learning for controller training, software verification, hardware
validation and setup, and navigating various sim-to-real chal-
lenges. Furthermore, we analyze the controller’s behavior and
wave-smoothing properties, and deploy it on 4 Toyota Rav4’s
in a real-world validation experiment on the I-24. Finally, we
release the driving dataset [1], the simulator and the trained
controller [2], to enable future benchmarking and controller
design.

Index Terms—Intelligent Transportation Systems, Autonomous
Vehicle Navigation, Energy and Environment-Aware Automation,
Reinforcement Learning.
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I. INTRODUCTION

THE increased availability of automated lane and distance-
keeping in modern vehicles has rapidly transitioned our

roadways into the mixed autonomy regime, i.e. automated and
human drivers all operating together. With the availability of
connected and automated vehicles (CAVs) as mobile traffic
actuators, it is now possible to perform Lagrangian traffic
control in which control of the highway is dispersed amongst
many vehicles in the flow. The ability to perform distributed
control using automated vehicles as actuators has brought
closer a long-standing goal of research in that field [3]–[7]:
to use the programmability and fast reaction time of CAVs to
improve highway metrics like congestion and energy efficiency
for the entirety of the highway traffic.

In this work, we focus on designing controllers that are able
to smooth waves using only local information that would be
accessible via in-vehicle sensors. Note that this precludes us
from smoothing low-frequency waves that are distributed over
a wide spatial distance; these waves are likely not observable
via individual vehicle sensors alone and would require the
inclusion of downstream information from loop sensors or
cameras. We first leverage data we collected by driving on
the highway to create a simulation replaying real vehicle
trajectories. Using Proximal Policy Optimization [8], an RL
policy gradient algorithm, we learn a controller that decreases
the fuel consumption of the platoon in simulation by 16%
for the CAV and 10% on average for the platoon vehicles.
We verify the controller’s behavior in a series of tests in
Gazebo, a 3D robotics simulator, then embed our controller
into the hardware stack, enabling it to read information from
the vehicle’s sensors and to send acceleration commands back.
Finally, we deploy the controller on four real vehicles in
highway traffic, showing that the resultant controllers exhibit
behaviors that are robust to potential gaps between field
deployment and our simplified simulator. An overview of the
full pipeline can be seen in Fig. 1.

Prior work [9] has shown that even at current low pen-
etration rates of less than 4%, empirical and theoretical
evidence suggests that CAVs can significantly reduce stop-
and-go traffic, a pernicious transitory phenomenon in which
vehicles alternate between starting and stopping, consuming
extra fuel in the process. However, prior approaches have
a unifying limitation: they are developed and analyzed in
simplistic settings such as vehicles traveling around a closed
ring or hand-designed input perturbations. Testing on more
complex settings is difficult as: 1) real-world highway sensor
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Fig. 1. Our pipeline for designing and validating automated-vehicle traffic-smoothing controllers. From left to right: collection of trajectory data by driving
on the highway; RL training in a simulation replaying the highway trajectories; software verification of the controller in Gazebo; integration of the trained
neural network into the hardware stack; validation experiment with 4 vehicles running the controller in highway traffic, and 7 human-driven vehicles for
metrics collection.

data is sparse and lacks the required resolution and detail
needed for accurate modeling; 2) developing simulators that
properly reproduce emergent traffic phenomena from many-
vehicle-interactions is challenging.

Even leaving aside the software engineering challenge of
designing large, calibrated micro-simulations, building com-
plex models of a highway is heavily data-constrained. Loop
detectors only yield macroscopic statistics such as the number
of vehicles crossing them and their speed, while cameras tend
to cover only a small portion of the roadway. This lack of avail-
able data is a fundamental issue as the trajectories of vehicles
traveling through waves depend on the wave speed [10], and
yet the wave speed and constituent frequencies are difficult to
estimate with available stationary sensors. However, without
an accurate means of reconstructing the stop-and-go traffic
that is likely to occur on a particular highway, it is difficult
to validate how a controller will perform when deployed on
that highway. Consequently, it is unclear whether progress on
control design for real-world smoothing is being made.

The main contribution of this work is the design and
demonstration of a safe pipeline for training and deploying
efficient wave-smoothing longitudinal controllers for CAVs.
Our pipeline avoids the aforementioned modeling challenges
by leveraging field-deployment data to accurately reproduce
the distribution of waves observed on the I-24 in Tennessee,
on which we intend to deploy CAVs. Instead of attempting to
build or tune a large high-fidelity simulation, we evaluate and
train our controllers on this collected highway trajectory data.
We construct our simulation in a way that enables a realistic
representation and evolution of waves from the particular high-
way on which we intend to deploy CAVs, and train controllers
to smooth these waves using state-of-the-art RL methods. We
design our controllers to be deployable on real-world cars
with built-in hardware sensors and actuation, and optimize
them over several criteria including energy efficiency, safety,
smoothness and adherence to human norms. Controllers then
undergo software verification, after which they are exported
and wrapped for deployment on a specific hardware stack.
Once deployed onto the vehicle and tested in simple scenarios,
the controllers are ready to safely drive on the highway,
under human supervision. While all the blocks in our pipeline
work together, they can be switched with other components.

For instance, training could be done using different data or
simulations, and different car models might require a different
hardware stack.

The rest of this article is organized as follows: in Section II,
we discuss the related work. In Section III, we discuss the data
collection process and how it was used to build simulations
that replicate realistic traffic dynamics. In Section IV, we
describe the controller design process, by which we trained
safe and efficient flow-smoothing controllers using our data-
based simulation. In Section V, we describe the deployment
pipeline that safely and robustly ports our controllers trained
in simulation onto the physical vehicle’s hardware via a
battery of software and hardware tests. In Section VI, we
discuss the performance and behavior of the controllers in
simulation, as well as results from the field tests we conducted
on the highway. Finally, Section VII concludes this work and
provides practical considerations to be considered in future
work.

II. RELATED WORK

Prior work has investigated the efficacy of traffic smoothing
controllers on settings such as rings or hand-designed input
perturbations. The most closely related works are [9], [11]–
[13]. In [9], the authors showed that a single CAV could
be used to dampen stop-and-go waves on a ring with 21
human drivers, yielding sharply improved fuel efficiency. The
work in [11] studies traffic smoothing with connected CAVs
and demonstrates that the connectivity can be used for more
effective dampening of waves on a single-lane, eight-mile-
long public road. The work in [12] conducted an experiment
in which three control vehicles were lined up across three
highway lanes and their preferred speed is selected by an
external centralized controller with the goal of smoothing
traffic flow. Finally, [13] uses a similar approach as this work,
using the highD dataset [14] to generate realistic waves that are
then dampened by a following RL-controlled vehicle, while
[15] designs CAV smoothing controllers using microscopic
models calibrated from NGSIM trajectory data [16]. The
primary distinction between this work and [13] is the use
of a calibrated energy model and the physical deployment of
our system onto the roadway.
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Other works have considered the wave-dampening prop-
erties of existing commercially-available cruise controllers,
with [17]–[19] all observing that the vehicles they tested were
string unstable (see [20] for a definition of string instability).
Finally, [21] has studied some of the sim-to-real challenges
in deploying RL-learned cruise controllers into more realistic
settings. Prior work has also studied the use of reinforcement
learning (RL) and optimal control for developing micro-
level controllers that optimize mixed autonomy traffic. [22]
learns memory-based policies that infer ring densities and
consequently outputs near-optimal policies for the ring, [23]
uses multi-agent reinforcement learning (MARL) to optimize
the throughput of a merging region, and [24] employs MARL
to investigate the potential impacts of altruistic automated
driving on a merge scenario. At a network level, RL has been
used to learn routing behaviors for CAVs that induce human
drivers to select paths that lead to decreased congestion [25].

This work is based upon preliminary work [2], which
primarily introduces the data collection process, releases the
associated dataset, and provides an overview of how the RL
controller is trained as well as initial simulation and deploy-
ment results. In this work, a detailed pipeline for the design,
development and deployment of RL-based controllers using
real trajectory data is introduced. This encompasses every step,
from data acquisition, RL setup and training (which were pre-
viously introduced in [2]) to all the stages of deployment onto
vehicles, including software verification, hardware validation
and hardware setup. Special attention is given to the inclusion
of a safety controller and the development of a hardware stack
for controller-to-vehicle communication. Essential adjustments
are detailed, like aligning the acceleration command with the
vehicle’s hardware capabilities to match the desired accelera-
tion command with the realized one, or to adapt to limitations
of the vehicle’s sensors. Finally, the controller’s behavior is
analyzed more in depth, with an emphasis on understanding
how it is able to smooth traffic.

III. DATA-BASED SIMULATION

This section details the process by which we build a data-
based simulator from highway trajectory data we collected.
This simulator serves as the basis for training and evaluating
our wave-smoothing controllers: a simulated vehicle replays
the real-world trajectory in simulation, and a simulated CAV
drives behind it and learns to smooth the perturbations that
the trajectory exhibits, such as stop-and-go waves.

A. Data Collection and Processing

We collected a driving dataset by recording trajectory data
on a 14.5-kilometer-long segment (displayed in Fig. 2) of the
I-24 located southeast of Nashville, Tennessee. Each drive is
conducted in an instrumented vehicle that logs Controller
Area Network (CAN) and GPS data (time, longitude and
latitude) via libpanda [26]. Collected CAN data includes
measurements from the vehicle’s sensors such as the velocity
and instantaneous acceleration of the ego vehicle (the ve-
hicle being driven), the relative velocity of the lead vehicle

Fig. 2. Portion of the I-24 highway on which we collected most of the
dataset described in Sec. III-A, and where we ran the experiments described
in Sec. VI.

(the vehicle in front of the ego vehicle), and the space-gap
(bumper-to-bumper distance).

The raw data from each drive was stored in two files:
a CAN data file and a GPS file. The pertinent data was
extracted from the CAN data and decoded into readable CSV
format using Strym [27], combined with the GPS data. In
order to synchronize the CAN data with the GPS time, which
is recorded at 10 Hz, high-frequency CAN data was down-
sampled and then linearly interpolated, while low-frequency
data directly underwent linear interpolation. Additionally, the
distance traveled and direction of travel were calculated using
GPS positional data. The processed dataset, used to train the
algorithm in this work, is made publicly available at [1].

The drives are varied in the time of day, day of the week,
direction of travel on the highway, and level of congestion.
Each drive is made up of one or more passes through the
highway stretch of interest. As such, the data is collected over
a wide range of traffic conditions ranging from congested traf-
fic to free-flow traffic, including many successive acceleration
and deceleration patterns that characterize stop-and-go waves.
Fig. 3 shows an example trajectory from the dataset where we
can observe such patterns.

Our main goal is to smooth higher-frequency waves, which
typically happen in the lower range of speeds. However, the
distribution of speeds in the training dataset, shown in Fig. 4,
is skewed towards higher speeds. While we could filter the
dataset to only contain low speeds, likely making the learning
problem simpler, Fig. 3 suggests that regions of congestion are
often quickly followed by regions of high speed. To ensure
our controller behaves appropriately at high speeds and in
transitions between high and low-speed regions, we keep both
low and high velocities in the training dataset. However, we
observe that the westbound data contains a lot more stop-and-
go traffic than the collected eastbound data, which is mostly
free-flow traffic. Thus, we focus on westbound data in this
work , which contains 60 trajectories (also including free-flow
traffic), representing 8.8 hours and 772.3 kilometers of driving.
We observe that this is more than enough data to generalize
and prevent overfitting, especially given that we use a very
small and local observation space and small neural networks.

Finally, we note that our collected dataset contains both the
trajectory of our drivers and the vehicles in front of them (via
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Fig. 3. Velocity of the ego vehicle (blue) and space-gap to the lead vehicle
(red) for a single trajectory in the dataset, containing sharp variations in both
velocity and space-gap.

Fig. 4. Histogram showing the distribution of velocities of the ego vehicle
in the dataset.

Fig. 5. Vehicle formation used in simulation. A trajectory leader (in green)
driving a speed profile drawn from the dataset is placed in front of a CAV (in
red) which is followed by a platoon of 5 human vehicles (in black), modeled
using the Intelligent Driver Model.

space-gap and relative velocity data logged on the CAN). We
discard the lead trajectories and do not use them for simulation
for two reasons. First, the lead trajectories contain both cut-
ins (a vehicle cuts in between the lead vehicle and the ego
driver) and cut-outs (the lead vehicle changes lanes). While
cut-outs are likely unaffected by the behavior of the ego driver,
cut-ins are likely a function of the spacing between the ego
driver and the lead vehicle. Since our trained controller will
have different space-gap-keeping patterns, it is possible that
the observed cut-outs would not occur given the controller’s
choice of space-gaps. Secondly, since the lane changes cause
sudden variations in the spacing to the leader vehicle, it is
possible for the leader vehicle to wind up behind the CAV
if it keeps a closer gap to the leader than the vehicle that
collected the data.

B. Constructing the Training Environment

In order to use the collected data to learn traffic-smoothing
controllers, we build a fast single-lane simulator in which
the real-world trajectory is replayed through a single vehicle
placed at the front of a simulated platoon. The platoon consists
of a mix of CAVs and human vehicles, described in Sec. III-C.
During training, a CAV is typically driving right behind the
dataset trajectory and is followed by from 5 to 25 human
vehicles; this scenario is depicted in Fig. 5. The CAV’s goal is

to learn to smooth out the waves and perturbations introduced
from the real-world trajectory, in a way that also stabilizes the
platoon of human vehicles behind it.

Although having a full micro-simulation of the I-24 would
allow for training on a model with complex long-range interac-
tions between the vehicles, the simulator proposed here allows
us to train on realistic driving dynamics that are representative
of both the types of waves on this highway and how drivers
react to wave formation. As an additional benefit, this single-
lane simulation is significantly faster than a comparable micro-
simulation of the full 14-kilometer road section with thousands
of vehicles, which has a high computational cost.

C. Human Driver Model

We use the standard IDM model [28] to model human
vehicles in our simulation. Indicating by xi, vi, the position
and velocity of the i-th vehicle, such that i− 1 is the vehicle
directly in front of vehicle i, we have (for IDM-controlled
vehicles) ẋi = vi and

v̇i = a

1−
(
|vi|
vf

)δ
−

s0 + viτ + vi(vi−vi−1)

2
√
ab

xi−1 − xi − `

2
 (1)

where the parameters are as follows: a is the maximum
vehicle acceleration, b the comfortable braking deceleration,
vf the desired free-flow velocity, τ the desired time gap, s0

the minimum desired space gap, ` the vehicle length, and δ
the acceleration exponent.

We consider the following parameters in our work: a =
1.3 m

s2 , b = 2.0 m
s2 , vf = 45 m

s , δ = 4, s0 = 2m and
` = 5m. Moreover, we add a small Gaussian noise to the
IDM acceleration output v̇i, modeled as a centered normal
distribution N(0, σ2) with standard deviation σ = 0.1 (which
accounts for the fixed discretization timestep dt = 0.1s).

There are some important considerations that we made
regarding the choice of the IDM parameters. Previous works
observed that existing commercially available cruise con-
trollers are string-unstable [17], [19], meaning that they will
amplify traffic waves rather than smooth them. Human driving
is also generally string-unstable, as stop-and-go wave patterns
are ubiquitous in highway traffic, especially above a certain
network capacity. As such, we want to replicate this behav-
ior of growth and propagation of stop-and-go waves in our
simulation. Indeed, if we used a string-stable car-following
model, the waves would naturally dissipate and there would
be nothing left for our CAVs to learn to smooth.

In order to test for the string-instability of a particular set
of IDM parameters, we employed a method similar to [19],
placing vehicles on a ring road and doing a numerical analysis
of the propagation of perturbations along the string of vehicles,
analyzing whether they are growing or vanishing. In particular,
the model was tested to be string-unstable below 18 m

s (as
can be observed in Fig. 13, left), where this specific value
is chosen empirically as a boundary between the congested
regime, in which stop-and-go waves typically happen, and the
free-flow regime, in which there is not much for the CAVs
to smooth except for small local perturbations. We thus chose
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the a and b parameters to ensure the instability of the model
in the congested region, while staying close to the original
model parameters [28]. These two parameters can typically
make or break the string-stability, as they control the sharpness
of accelerations. The maximum speed parameter vf , usually
set to the speed limit, is empirically chosen to be around the
largest speeds in our dataset, and the values for s0 and δ are
left to their typical value in the literature [28].

IV. CONTROLLER DESIGN

In this section, we describe the process by which we design
flow-smoothing energy-improving controllers using our data-
based simulation. We first design the controller’s inputs and
outputs while keeping deployability in mind, then an objective
function that balances energy efficiency, safety, smoothness
and adherence to social driving norms. We then introduce the
training algorithm we use, with slight modifications for better
training stability in our partially-observable context. Finally,
we introduce some details about the training experiments.

A. Partially-Observable Markov Decision Process

Due to the ability to acquire information about the state
solely through CAN data (and optionally GPS), we model our
problem as a Partially-Observable Markov Decision Process
(POMDP) [29]. Below we describe the state and action spaces
that are feasible to implement given our available sensing and
actuation capabilities, as well as the reward function we aim
to maximize.

1) State Space: The observations are [v, vlead, h] where v is
the CAV speed, vlead the speed of the vehicle right in front of
it, and h the space-gap. All of these features can be acquired
by using the stock forward-facing radar and the data collection
software [26], [30] that we place on our vehicles. Note that
this state is partially observed; the vehicle is not provided with
information such as the state of vehicles in the platoon behind
it nor information needed to predict the evolution of its leader
vehicle.

2) Action Space: The policy’s output is an instantaneous
acceleration a, bounded between [−3.0, 1.5] m

s2 . It may be
further clipped to respect the speed limit and is then applied to
the CAV. Note that we do not allow the CAVs to lane-change
in this work to minimize safety considerations.

3) Reward Function: The reward the CAV receives at time-
step t is a combination of minimizing energy consumption,
acceleration regularization, and penalties for leaving too small
or too large gaps. It is given by

rt = 1− c0Et − c1a2
t − c2Pt . (2)

Here Et is the instantaneous gallons of fuel consumed by
the CAV (given by a piece-wise polynomial energy model
calibrated to a Toyota Rav4; the fitting procedure and function
coefficients are given in [31]), at the CAV’s instantaneous
acceleration in m

s2 and Pt its gap penalty, all at time-step t.
The first term is intended to discourage fuel consumption,
the second to encourage smooth driving, and the third to
discourage the formation of large gaps that induce cut-ins or

small gaps that might be unsafe. Pt is essential as the energy-
minimizing solution is to come to a full stop; Pt both removes
this solution and is used to encourage the vehicle to drive with
a “sensible“ distance to its lead vehicle.

For our reward functions, we use coefficients c0 = 1.0 hour
gallon ,

c1 = 0.002 s
2

m and c2 = 2, and penalize with Pt = 1 when
the gap is below 7m, above 120m or when the time-gap (i.e.,
space-gap over speed) to the leader is below 1 second. These
particular values were selected via an informal hyperparameter
search and found to yield improved fuel consumption of the
platoon while maintaining both plausible roadway behaviors
(via not opening too large a gap) and driver comfort (via not
getting too close to the leader.

Note that our reward function does not directly optimize
the stated objective of optimizing miles per gallon (MPG).
Unfortunately, mile-per-gallon is a quantity that can only be
calculated at the completion of a trajectory and is therefore
challenging to use as a reward function since RL methods
struggle with infrequent rewards [32]. However, we note
that for a fixed-length trajectory, subject to the constraint
that the vehicle must complete the entire trajectory before
the episode terminates, minimization of consumed fuel and
MPG maximization are equivalent. This is simply because, in
the fixed-length trajectory, the numerator in the MPG term
becomes a constant.

B. Asymmetric Actor-Critic Algorithm

We train our policy using Proximal Policy Optimization [8]
(PPO), a policy gradient algorithm. We modify the standard
PPO algorithm by providing the value function with a few
additional inputs: the total distance traveled from start to time
t, the total energy consumed by the agent at time t, and time
t. The value function V π estimates the reward-to-go from a
given state st and a particularly controller π as

V π(st) = E

 T∑
j=t

γ(j−t)r(sj , aj) | sj

 . (3)

This quantity is difficult to estimate without the additional
information we provide due to the partially observed state
described in Sec. IV-A. The non-local information provided
to the value function is used exclusively during training for
variance reduction (see [8] for details on the usage of the value
function), and these additional inputs are neither available nor
needed by the controller during evaluation.

C. Training Details

Training was done using the PPO implementation provided
in Stable Baselines 3 [33] version 1.0, a Pytorch-based deep
RL library. Training details, a script to reproduce the results
in the article, and hyperparameters are provided in the linked
code-base.

Each episode is run with a fixed horizon of 1000 steps. For
a leader trajectory of length M, we sample the start-point of a
trajectory uniformly from the first M−1000 steps. Termination
of the trajectory occurs when the fixed horizon is reached.
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We note that there is an incongruity between the finite-
horizon objective and our infinite-horizon field deployment.
The shorter horizons are used here as gradient-based controller
design methods (in particular the ones used here) can struggle
with long horizons due to a linear dependency of the variance
of the gradient estimator on the horizon [34]. It is possible
that optimizing the gallons consumed on the finite horizon
generates behavior that is sub-optimal for a longer horizon.

Finally, the dynamics of all vehicles in the system are double
integrators updated with a ballistic update [35] and a 0.1
second time-step with the exception of the lead vehicle whose
position is directly updated from the pre-recorded data. The
vehicles following behind the RL vehicle are updated using a
Gaussian-perturbed IDM model described in Sec. III-C.

V. DEPLOYMENT PIPELINE

Once a trained controller performs well in simulation, several
modifications and validation steps are still needed before
deploying it on the hardware. Firstly, the control is wrapped in
a few layers for better out-of-training-distribution behavior and
for increased safety, and the acceleration output is converted
to a desired velocity that accounts for the specific vehicle’s
dynamics. After that, several tests are performed in a robotics
software that simulates the vehicle’s dynamics and stress
tests the controller in different driving scenarios. Once the
controller passes all the checks in simulation, it is finally
deployed onto the vehicles and a battery of hardware tests
are performed before allowing the controller to drive in real
traffic conditions. The following subsections go over each of
the aforementioned steps in more details.

A. Post-Training Controller Modifications

We wrap our controller with a few modifications to handle
out-of-distribution behavior between the simulator and the
field deployment test. In particular, there are several significant
changes in the distribution of observed states caused by the
presence of lane changes in the field-deployment test that
require careful handling.

First, there are challenges related to headways (gaps to the
leader, also called space gaps) that exceed the values observed
in the simulator, and are consequently out-of-distribution
(OOD). As discussed in Sec. IV-A, we penalize the agent
if it gets more than 120 meters from the lead vehicle. As
a consequence, the CAV learns to successfully stay less than
120 meters away in all the trajectories evaluated in the later
stages of training. It is possible (and we observe it to be the
case) that for headways significantly above 120 meters, the
controller has unexpected and undesirable behavior, usually of
opening too large gaps. That portion of the state space ceases
to be explored during training, and so appropriate behavior in
this region of state space is gradually forgotten. In particular,
at high speeds and above 150 meters, the controller begins to
slowly decelerate.

In the field-deployment, these large headways can occur
via two distinct mechanisms. First, if the CAV experiences a
close sequence of cut-outs of the lead vehicle during field
deployment, the headway could rapidly increase to large

Fig. 6. Acceleration behavior of the RL controller (ego) as a function of the
leader speed and gap to the leader for a fixed speed of the RL controller.
The set of equilibrium values is given by the intersection of the thick black
curve and the dotted curve. Due to out-of-distribution behavior, there are two
unique equilibria, one of which occurs at an undesirably large gap.

values. Additionally, the radar can occasionally not detect a
lead vehicle. This occurs when either a lead vehicle is more
than 250 meters away i.e. outside the range of the radar, or
when the vehicle is taking a sharp curve and the lead vehicle
ceases to be visible. In both of these cases, the radar returns a
distance of 250 meters when the lead vehicle is missing which
puts us into the range of the OOD behavior of the controller.
We handle this case and ensure that the gap above 120
meters is rapidly closed by smoothly interpolating between
the acceleration output by the controller and an acceleration
of 0.75 m

s2 using a logistic function. We note that it would
be difficult for the neural network itself to smoothly handle
sharply losing the leader vehicle. Indeed, some history of
past states would be required for the controller to keep some
memory of the surrounding traffic speed, which we leave for
future work as a controller with more inputs would be more
prone to overfitting, and the higher-dimensional input space
would be harder to verify.

However, for very large gaps, continually accelerating at
0.75 m

s2 can lead to unreasonable speeds. For this reason, we
cap the speed at 35 m

s and apply an additional safety filter that
smoothly interpolates between the desired acceleration down
to an acceleration of −3.0 if the vehicle Time-To-Collision
(time to close the headway to a stopped leader) falls below
6.5s.

After applying all these changes, the resultant controller is
the following:

ct =
1

1 + exp

(
−ht − 120

10

)
at = (1− ct)× π (st) + ct × 0.75

(4)

where π(st) is the controller. Soft logistics are used rather
than explicit if-else statements to account for the type of
operands that are supported by the ONNX format we use to
deploy controllers onto the vehicles (which we convert using
torch.onnx.export).
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In summary, the modifications described here are intended
to keep the controller within the set of states that are in-
distribution and override undesirable out-of-distribution behav-
ior.

B. Converting Acceleration to Velocity

Here, we briefly describe the procedure used to convert our
acceleration-based controller into a velocity-based controller.
We refer to this as the ”A-to-V trick”. This step is necessary,
as the action space of the RL-controller outputs an acceleration
(see “Action space” in Sec. IV-A), but the vehicle control
stack requires a velocity-based controller. We set the desired
control speed as vdes(t) = v(t) + Ta(t), v(t) is the current
vehicle speed, T is a constant and a(t) is the output from the
action space of our controller. The constant T must be tuned
according to the specific vehicle’s dynamics to account for the
delay between commanding a certain velocity and the vehicle
actually reaching this desired velocity.

In order to ensure that the commanded acceleration closely
matches our desired acceleration, we fit a model of the
vehicle’s transfer function (see Appendix Sec. A for the system
identification that led to our transfer function) to the first-order
model in the s-domain Ψ(s) = 1

1+τs . In state-space form this
corresponds to the relaxation ODE v̇(t) = 1

τ (vdes(t)− v(t)).
Using the relationship vdes(t) = v(t) +Ta(t) and some minor
simplifications, we arrive at v̇(t) = T

τ a: selecting T = τ gives
us the desired property of our output acceleration matching out
desired acceleration. We fit to the original transfer function and
observe that τ = 0.6 is the closest fit, so our final function is
vdes(t) = v(t) + 0.6a9t).

C. Safety Control Layer

We additionally wrap our controller in a safety layer to min-
imize potential risks. An overview of the different components
of the model can be seen in Fig. 9. We use the FollowerStopper
from [9], [36], with modifications to the previously used
coefficients to decrease the range of actions where the safety
controller might override our controller. while remaining safe

The FollowerStopper serves as a velocity controller, navi-
gating the speed of individual vehicles to a predefined desired
speed vdes while maintaining a safe gap with the vehicle ahead.
Following this model, the command velocity vcmd of an CAV
is defined as:

vcmd =


0 if hα ≤ ∆x1

v ∆x−∆x1

∆x2−∆x1
if ∆x1 ≤ hα ≤ ∆x2

v + (vdes − v) ∆x−∆x2

∆x3−∆x2
if ∆x2 ≤ hα ≤ ∆x3

vdes otherwise
(5)

where v = min(max(vl, 0), vdes) and ∆xk is defined as:

∆xk = ∆x0
k +

1

2dk
(∆v−)2, k = 1, 2, 3 (6)

where ∆v− = min(∆v, 0) is the negative arm of difference
between the speed of the lead vehicle and the speed of the
CAV. See [9] for more details. Here vdes is the output of
the controller described in Sec. V-B. We note that while

Fig. 7. The 2-vehicle simulated scenario used for assessing the behavior of
the RL controller. The lead car performs a series of abrupt starts and stops
that the RL car behind it must safely respond to.

the FollowerStopper controller is designed to drive smoothly
and has safety mechanisms [9], safety can difficulty be fully
guaranteed in real-world conditions. During the experiment,
since safety was of utmost importance, drivers were instructed
to disable the control whenever they had any doubt about the
behavior of the control or of the safety wrapper.

D. Software Controller Verification

Before evaluating the controller as a candidate for deploy-
ment on hardware, a transfer-learning test is conducted to
assess the effectiveness of the controller when exposed to
varying dynamics that could potentially be experienced during
the real-world test. We refer to this as the Software-in-the-loop
(SWIL) tests. The SWIL test is intended to elucidate potential
failure modes of the wrapped RL controller by running it
in a different environment with out-of-distribution dynamics
changes from the training environment. In particular, the SWIL
test contains different sized time-steps for integrating the
dynamics, unseen vehicular dynamics, and a new set of leader
trajectories. The transfer-learning environment consists of a
2-vehicle leader-follower pair (in which our controller is the
follower) where both vehicles are controlled via ROS [37]
and simulated in Gazebo [38]. The vehicles in Gazebo have
significantly different dynamics than our simulator.

An initial software-in-the-loop (SWIL) step is taken to
check functional correctness and interface testing in a 2-
vehicle Gazebo simulation [38] as is shown in Fig. 8. In this
2-vehicle scenario, structured velocity profiles (e.g., constant
acceleration, sinusoidal, trapezoidal) are given as an input
to the leader vehicle, and the RL controller is deployed on
its follower vehicle to ensure outputs are not unusual (e.g.
acceleration is bounded within reasonable values, appropriate
safety gaps are maintained, etc.) and yield safe behavior. An
example of one of the tests, consisting of sharp starts-and-stops
of the lead vehicle is depicted in Figure 8.

E. Hardware Deployment Stack

Once the controller has passed all the tests in simulation, it
can be deployed onto the hardware. Like many modern vehi-
cles, the Toyota Rav4 on which we deploy our controller uses
distributed communicating electronic control units (ECUs)
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Fig. 8. Resultant RL velocity and space-gap profiles of the RL controller when
following behind a rapidly accelerating and decelerating vehicle in Gazebo.

that exchange information using the Controller Area Network
(CAN) protocol. This enables a drive-by-wire architecture,
where sensors distribute messages about the vehicle’s state
and modules can actuate control using the CAN bus. This in-
frastructure makes it possible to connect third-party devices to
the CAN bus to both read and send information to a vehicle’s
modules. This concept was leveraged both for recording data
as well as executing the validation experiments that replace
the vehicle’s stock cruise controller with our experimental
controller.

Since CAN is a standard protocol, the method of viewing
CAN messages is a trivial task (if the CAN codes are known)
with CAN hardware. Many companies provide hardware to
interface with the CAN bus in vehicles, a common one
being an OBD-II reader for mandated vehicle diagnostics and
emission compliance. A greater challenge is to have a device
that parses CAN data and then with a relay switch replace
messages in real time to actuate according to experimental
control algorithms. Fortunately, there are both commercial and
open-sourced implementations of such a device, but software
interfaces may not be sufficiently reliable to utilize them in
real time.

Libpanda [26] was designed as a high-performance library
for data collection and vehicle control on low-cost embedded
computers like the Raspberry Pi. It creates a direct interface
with the vehicle control system. The Can2Ros package [30]
creates a bridge between vehicle CAN data and the Robotics
Operating System (ROS) [39], to expose components of the ve-
hicle’s cruise controller to our customized software controllers,
allowing for acceleration command requests.

In order to deploy our trained neural network controllers
onto the hardware, we first convert them into the ONNX

format. Using MATLAB’s Simulink, the neural network is
embedded in a ROS node subscribing to pertinent CAN-
to-ROS data, and its output is sent to the vehicle interface
(leveraging the libpanda package) which takes a desired ROS
command and sends it via CAN to the vehicle. The vehicle
snensors then send data on the CAN bus, which libpanda
records and translates into ROS, allowing it to be read by
the neural network.

F. Hardware Controller Validation

For hardware-in-the-loop (HWIL) deployment on the physi-
cal vehicle, the controller must first pass a series of three tests
to mitigate safety risks from the transition from simulation to
the physical vehicle. Once these tests have passed, the con-
troller is eligible to be run in live traffic. All three tests modify
the input from the leader vehicle, to ensure performance in
non-equilibrium states. Such tests assess the performance for
an initial response, vehicle collision, and space gap between
two vehicles as the test progresses over time.

First, the controller is tested in a ‘Ghost Mode’ as in [40]
where the vehicle follows a simulated ‘Ghost’ vehicle as its
leader. In this scenario, the distance traveled by the ego car
is compared with the distance traveled by the simulated car,
and the relative distance is shared directly to the ego car
(rather than depending on the on-board sensors to detect the
presence of a physical car) through the ROS interface [30].
In the event that there are serious mismatches between the
simulation/reality of the vehicle dynamics, the Ghost Mode
test will fail due to a simulated collision into a virtual vehicle.

Second, the controller is tested with a human-in-the-loop
(HIL) as described in [40], in which desired controller feed-
back is performed by the human operator. This second test
occurs on a low-traffic, high-speed route. Here the vehicle sen-
sors feed real-time data into the controller, and the controller
outputs a desired velocity. A passenger periodically reads out
the desired velocity to the driver who attempts to faithfully
actuate it. If the controller provides unsafe input to the HIL it
is rejected by the driver to maintain safety and replaced with
human control.

Thirdly and finally, the controller is used on a low-traffic,
high-speed route to test the complete hardware-in-the-loop
control system. This test was typically performed on the same
freeway route but during low-traffic periods.

Once these validation tests have been successfully passed,
the controller is ready to be tested in heavy traffic on the high-
speed I-24 roadway segment.

VI. EXPERIMENT RESULTS

In this section, we present the results of our research, with
a primary focus on analyzing the performance of our con-
troller within a simulated environment. Our key metric of
interest is energy efficiency, measured in terms of percentage
improvements, as we compare a CAV using our RL controller
against an IDM controller. The simulation results highlight
substantial energy savings, particularly at lower speeds, where
the RL controller exhibits notable wave-smoothing behavior,
mitigating sharp accelerations and decelerations. Additionally,
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Fig. 9. A schematic diagram of the controller structure we used for the traffic smoothing experiment. The ONNX2ROS framework is used to make predictions
using the trained RL model in real-time. The model’s outputted acceleration is transformed into a desired set speed using the A-to-V trick described in Sec. V-B.
That desired speed is then fed into the safety FollowerStopper controller described in Sec. V-C, which commands a velocity to the car. Note that both the RL
model and the safety controller take some combination of ego speed, leader speed, and space gap as inputs.

Fig. 10. Percent improvement in MPG relative to a baseline in which the
CAV in the platoon in Fig. 5 is replaced by an IDM vehicle. Each column
contains both percent improvement on the y-axis and MPG values used to
compute this improvement inside each column with IDM (CAV) on the left
(right) of the arrow. High and low-speed columns are over the training set.
The ”Test trajectories” column is the controller evaluated on data from the
physical test.

we touch upon the analysis of the RL controller behavior,
shedding light on its role in achieving these energy sav-
ings. While we acknowledge that only limited real-world
experimentation has been conducted, we briefly mention the
promising findings from these initial tests, indicating potential
fuel efficiency improvements.

A. Simulation Results

Here we analyze the performance of the controller in our
simulator in terms of energy efficiency, which we measure in
the industry-standard miles per gallon (MPG) unit, although
here we are only interested in percentage improvements. In
Fig. 10, we compare the energy consumption of the CAV and
all vehicles in the platoon (as shown in Fig. 5) when the CAV

is using our RL controller compared to an IDM controller,
over the whole training dataset. We split the trajectories by
leader speed, computing the energy savings at leader speeds
above and below 18 m

s , which is the speed boundary beyond
which IDM vehicles with the parameters used in this work go
from being string-unstable to string-stable. The results in the
left and middle columns indicate that most of the expected
energy improvements from the controller will come at low
speeds. While these savings are significant, in more complex
settings imperfections in actuation, modeling of human drivers,
and cut-ins would likely lower the actual improvement. The
rightmost column is described in Sec. VI-C.

In order to illustrate where the energy savings may come
from, we show a simulated dataset trajectory as well as the
velocity of a CAV driving behind it in Fig. 11. We can observe
how the speed profile of the CAV is a smoothed version of
the leader’s, attempting to not go quite as high (resp. quite as
low) as the leader in sharp acceleration (resp. braking) phases,
and attenuating low-frequency oscillations.

Fig. 12 shows a similar plot, but using a sinusoidal leader
trajectory instead of a real-world one, and comparing the
wave-smoothing behavior of the RL control to what the IDM
does. We can observe how the CAV reduces the amplitude of
the wave by leaving some distance to the leader while the IDM
follows the leader much more closely. This behavior repeats
with other speeds and wave amplitudes (although the larger
the period, the closer RL and IDM become), and can begin to
explain the smoothing performances of RL.

B. Controller Behavior Analysis

To understand the improvements described in Sec. VI-A, we
can build two-dimensional slices of the controller behavior to
analyze what it is doing and how it differs from the IDM
model.
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Fig. 11. Speed, instantaneous acceleration and space gap of an RL-controlled CAV following a leader vehicle replaying one trajectory from the dataset, as
well as the speed and acceleration of that leader vehicle for reference.

Fig. 12. Position and speed of a lead vehicle whose speed follows a sinusoidal wave of mean 5 m
s , amplitude 3 m

s and period 15s, as well as of a CAV
following this vehicle, comparing an IDM-controlled CAV to an RL-controlled one. Note that position is represented relative to a linearly-moving frame of
reference (represented as the diagonal gray lines) so that the leader position is displayed as a sine wave.

We begin by analyzing whether the RL performs better at
smoothing waves than IDM. Fig. 13 shows the growth factor
of the RL control over a variety of equilibrium speeds and
wave periods. A growth larger than 1 means that the control
will amplify the waves, less than 1 attenuate it, and equal to
1 leave it as is. We can observe that RL is stable and has a
lower growth factor up to quite higher periods than IDM up

to equilibrium speeds above 16 m
s , which is reasonable as we

are mostly concerned with waves at lower speeds.

Fig. 14 shows the acceleration profile of RL for equal
ego and leader velocities, as a function of space gap. We
can observe that RL has larger equilibrium gaps than IDM
on average (up to speeds above 25 m

s ). We hypothesize that
opening large gaps in order to absorb the potential braking



11

Fig. 13. Regions of instability at equilibrium for IDM (left) and RL (right). The solid red line shows the boundary between stable and unstable for the RL
controller, while the dashed red line shows the same for the IDM controller, for comparison. The RL controller stabilizes the system up to lower frequencies
at lower speeds (up to periods of 40s) but at higher speeds stabilizes fewer high frequencies than an IDM controller. It is unclear why the RL controller
results in this saw-pattern boundary.

Fig. 14. Acceleration heatmap of the RL control as a function of ego speed,
which is assumed equal to leader speed, and space gap. The solid black line
shows the acceleration=0 region, i.e., the equilibrium gaps for each speed,
assuming the CAV and the leader drive at the same speed. The dashed black
line is the corresponding equilibrium curve for an IDM controller.

of the leader is a component of how the RL control achieves
wave smoothing.

Finally, Fig. 15 shows acceleration profiles for different
ego and leader velocities, where we can observe how the RL
control brakes more smoothly and is willing to open larger
gaps than IDM.

C. Highway Field Tests

In this section, we describe a set of validation experiments
conducted on the segment of I-24 shown in Fig. 2 during Au-
gust 2021. We assess the success of the controller deployment
onto CAVs by showing an accurate match in the maintained
AV speed and gap between simulation and reality. Finally, we
seek to determine whether our controller improved the energy
efficiency of its platoon.

Fig. 19 shows four vehicles from the eleven-vehicle platoon
of alternating humans and CAVs that we deployed on I-24. The
vehicles are arranged with two human drivers at the front of the
platoon to serve as test probes. These vehicles are unaffected

Fig. 15. Acceleration heatmaps (in color) of the IDM (left column) versus
our RL control (right column) as a function of leader speed and space gap,
for different fixed ego speeds of 5 m

s (first row), 10 m
s (second row) and 15 m

s
(third row). The solid black line shows the accel=0 boundary, and the dotted
black line shows the x=ego speed, meaning that the intersection of both black
lines is the equilibrium gap at equal ego and leader speeds.

by the behavior of the CAVs and can serve as a proxy measure
for the MPG of the unsmoothed traffic. We then alternate four
CAVs and human drivers going down the platoon. We chose
the alternating order rather than a continuous platoon as we
expect the platoon to organically spread through interaction
with human drivers that change into the platoon’s lane. Each



12

Fig. 16. Time-space diagram showing the trajectories of our platoon of vehicles during the first test. We can observe two regions of congestion (visible in
red) where the CAV may have a smoothing effect.

human-CAV pair constitutes a small sub-platoon on which
we can measure the influence of the CAV on its following
vehicles.

For each test, the platoon merged onto the highway without
any non-platoon vehicles lane-changing into it, thanks to the
help of the police department. Once on the highway, non-
platoon traffic cut in and out of our platoon. Our vehicles were
only instrumented to sense the vehicle in front of them, so the
number of vehicles that entered our platoon may be unknown
but can be established by a lower bound when examining
discontinuities in lead vehicle distance, and may be explored
in future work. We note that all of our 11 vehicles drove in a
single lane throughout each experiment, and our human drivers
were instructed to drive as they normally would, so as to not
bias the experiment.

We conducted field experiments on August 2nd, 4th, and
6th of 2021, in which many controllers were tested. Each day
we launched the platoon of vehicles three times, bringing the
vehicles back to the start of the highway section in between
each run. The controller presented here was actuated on 08/06,
over three tests that started at 6:45, 7:29, and 8:36 AM. Fig. 16
shows individual vehicle trajectories on a time-space diagram
from the 6:45 AM test; the two regions of red correspond to
potential sources of congestion that the controller may have
reduced.

The deployment of the controller from simulation to real
vehicles was overall successful – all tests running safely and
smoothly. We investigated the effect of the sim-to-real gap
induced by the presence of cut-ins and cut-outs, which we did
not have when training our controller, as well as imperfect
modeling of the transfer function of the CAV.

First, we attempt to compute a counterfactual baseline
in which we replay our controller in simulation behind a
trajectory collected during the tests, thereby comparing a
simulated CAV’s behavior to one that has been tested on the
highway. However, because the real-world trajectories include
lane changes that our simulation cannot perfectly replicate, and

because replaying a different controller behind the trajectory
might affect the cut-in and cut-out frequencies, we have to
make some assumptions. We assume that both the timing
and spacing of these lane changes remain the same in both
the real and simulated scenarios. Besides, to avoid overly
aggressive lane changes in the simulation, namely cut-ins that
would be more aggressive than what the real-world CAV
experienced, we also adjust the following distance between
vehicles when needed, using a specific formula to balance
between the simulated and real-world conditions. To that end,
at each time-step t where a cut-in would leave the CAV with a
space-gap hsim

t while the real-world CAV experienced a space-
gap hreal

t , we set hsim
t = max(hsim

t ,min(hsim
t−1, h

real
t )).

Fig. 17 shows the velocity and time-gap (space-gap divided
by velocity) of a CAV from the validation experiment as
well as the replay of the trajectory in our simulation using
the counterfactual cut-in mechanism mentioned above. The
velocity profile of the vehicle closely matches its expected
behavior computed in the simulation. Although there are
mismatches around cut-ins and cut-outs (regions where the
time-gap changes discontinuously), the time-gaps are relatively
close and we can observe the vehicle roughly tracking a three-
second time-gap in both cases. We observed similar results on
the other trajectories we collected during the tests.

Finally, we analyze the potential fuel efficiency improve-
ments from the validation experiment. The third column in
Fig. 10 depicts the energy savings obtained when replaying
in simulation using the trajectories collected during the exper-
iments (instead of the training data which did not have lane
changes) using the counterfactual cut-in mechanism mentioned
earlier. We observe that the fuel efficiency of the CAV has
improved by 8% with additional small gains for the IDM
vehicles. Fig. 18 shows the density of accelerations taken by
the IDM vs. the CAV; the higher density of large accelerations
of the IDM vehicle is likely the reason for the improved fuel
efficiency of the RL CAV over the IDM CAV. Unfortunately,
the day of the deployment featured limited congestion so
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Fig. 17. Comparison of velocity and time-gap between a real (solid) and
simulated (dashed) roll-out. There are small divergences that occur around the
cut-ins but the car mostly maintains a three-second time-gap in both cases.

Fig. 18. Histogram showing the density of the CAV acceleration when
simulating a CAV or an IDM vehicle behind leader trajectories from the tests.
The CAV case places less mass at high, energy-consuming accelerations. The
peak observed at 0.75 corresponds to situations in which the lead vehicle is
out of range of radar due to a cut-out.

potential improvements are smaller than might be observed
in heavier traffic conditions. More experimental testing on a
number of days is needed to provide conclusive experimental
energy savings results. Here we compute estimates from
simulations using our models on experimental trajectory data.

VII. CONCLUSION

In this work, we proposed and tested a pipeline that al-
lows for effective validation and training of traffic smoothing
controllers. The behavior of the vehicle in the validation
experiment closely matches its expected simulation behavior,
suggesting that our pipeline is an effective mechanism for
validating controllers. Besides, even though we did not have
the means to measure energy improvement on the highway,
evaluating in simulation using real-world trajectories indicates
that our controller should have been doing smoothing, given
that the sim-to-real gap is low.

We observe that the main feature missing in our environ-
ment is the presence of counterfactual lane changes. In future
work, this can be addressed using the observed lane changes
in the data to build a single-lane lane-changing model that can
be used to extend our simulation. Additional field experiments
can support the assessment of our approaches in a range of
traffic congestion levels.
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APPENDIX
SYSTEM IDENTIFICATION

Let x(t), v(t), and a(t) be the position, velocity, and accel-
eration of the ego vehicle at time t. At any moment t, one
can control the acceleration a(t) of the ego vehicle through a
bounded acceleration command signal acmd(t).

For simplicity, we parametrize the acceleration dynamics as
the following first-order system

A(s)

Acmd(s)
=

k1

s+ k2
, (7)

where A(s) = L[a(t)] and Acmd(s) = L[acmd(t)] for some
parameters k1 and k2. The transfer function (7) is equivalent
in the time domain to the following state space model

ȧ(t) = −k2a(t) + k1acmd(t). (8)
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vdes THFS + PID A(s)
Acmd(s)

∫
v

vref + e acmd a
−

Fig. 20. Block diagram demonstrating our recent hardware design, which features a time headway follower stopper (THFS) as the safety filter and a PID
controller with output saturation as the velocity controller.

However, to ensure safety, we do not expose the interface
of acmd to users. Instead, one can only indirectly access it
by commanding a desired velocity signal vdes(t). The desired
velocity is passed through a safety filter, producing a reference
velocity signal vref(t), which is then tracked by a velocity
controller. An example of our recent hardware design can be
seen in Fig. 20.

To illuminate the underlying structure of the system in
Fig. 20, we assume that vdes is safe, i.e., vref = vdes, and that
the PID is never saturated. Let the PID takes the following
form,

Acmd(s)

E(s)
= kp +

ki
s

+
kd · kn

1 + kn/s
(9)

=
(kdkn + kp)s

2 + (kpkn + ki)s+ kikn
s2 + kns

, (10)

where Acmd(s) = L[acmd(t)], E(s) = L[e(t)], and e(t) :=
vref(t) − v(t) for some parameters kp, ki, kd and kn. The
controllable canonical form of (10) is[

ṗ(t)
q̇(t)

]
=

[
0 1
0 −kn

] [
p(t)
q(t)

]
+

[
0
1

]
(vdes(t)− v(t)),

acmd(t) =
[
kikn ki − k2

nkd
] [p(t)
q(t)

]
+ (kdkn + kp)(vdes(t)− v(t)),

(11)

where p, q are some internal states of the PID controller.
Combining (8) and (11), we obtain the vehicle dynamics as

the following linear time-invariant (LTI) system
ṗ(t)
q̇(t)
v̇(t)
ȧ(t)

 =


0 1 0 0
0 −kn −1 0
0 0 0 1
κ1 κ2 κ3 κ4



p(t)
q(t)
v(t)
a(t)

+


0
1
0
−κ3

 vdes(t),

y(t) =
[
0 0 1 0

] [
p(t) q(t) v(t) a(t)

]>
,

(12)
where y is the output of the system and

κ1

κ2

κ3

κ4

 =


k1kikn

k1ki − k1k
2
nkd

−(k1kdkn + k1kp)
−k2

 . (13)

The values of system parameters are provided in Table I, where
k1 and k2 are determined via system identification, whereas the
rest are selected during controller design experiments. Specif-
ically, system identification is performed on data collected by
recording the inputs and outputs of system (7) under different
driving velocities. The PID is first designed in Simulink and
then tested on the actual hardware. It can be verified that
system (12) with parameters in Table I is fully controllable
and observable.

TABLE I
PARAMETERS OF VEHICLE SYSTEM DYNAMICS.

k1 k2 kp ki kd kn
1.745 1.566 2.720 0.0656 1.340 7.549
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