
2088 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

Composing MPC With LQR and Neural Network
for Amortized Efficiency and Stable Control

Fangyu Wu , Guanhua Wang, Siyuan Zhuang, Kehan Wang, Alexander Keimer ,
Ion Stoica, and Alexandre Bayen , Fellow, IEEE

Abstract— Model predictive control (MPC) is a powerful con-
trol method that handles dynamical systems with constraints.
However, solving MPC iteratively in real time, i.e., implicit MPC,
remains a computational challenge. To address this, common
solutions include explicit MPC and function approximation.
Both methods, whenever applicable, may improve the compu-
tational efficiency of the implicit MPC by several orders of
magnitude. Nevertheless, explicit MPC often requires expensive
pre-computation and does not easily apply to higher-dimensional
problems. Meanwhile, function approximation, although scales
better with dimension, still requires pre-training on a large
dataset and generally cannot guarantee to find an accurate sur-
rogate policy, the failure of which often leads to closed-loop insta-
bility. To address these issues, we propose a triple-mode hybrid
control scheme, named Memory-Augmented MPC, by combining
a linear quadratic regulator, a neural network, and an MPC.
From its standard form, we derive two variants of such hybrid
control scheme: one customized for chaotic systems and the
other for slow systems. The proposed scheme does not require
pre-computation and is capable of improving the amortized
running time of the composed MPC with a well-trained neural
network. In addition, the scheme maintains closed-loop stability
with any neural networks of proper input and output dimensions,
alleviating the need for certifying optimality of the neural
network in safety-critical applications.

Note to Practitioners—This article was motivated by the need to
reduce the amortized cost of MPC in repetitive industrial robotic
applications, where long-term operational cost is important and
safety is critical. Examples of such applications include factory
robotic arm manipulation and fixed-route quadcopter payload
transport. Unlike explicit MPC or function approximation, our
approach does not require any pre-computation or pre-training.
Rather, it attains task proficiency over time by learning a
surrogate neural network on the spot and by gradually replacing
the costly MPC with the more efficient surrogate model so long

Manuscript received 13 January 2023; accepted 9 March 2023. Date of
publication 24 March 2023; date of current version 9 April 2024. This
article was recommended for publication by Associate Editor M. Gaggero and
Editor M. Dotoli upon evaluation of the reviewers’ comments. This material
is based upon work supported by the National Science Foundation under
Grant Numbers CNS-1837244. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation. This
material is based upon work supported by the U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy (EERE) award number
CID DE-EE0008872. The views expressed herein do not necessarily represent
the views of the U.S. Department of Energy or the United States Government.
(Corresponding author: Fangyu Wu.)

The authors are with the Department of Electrical Engineering and Com-
puter Sciences, University of California at Berkeley, Berkeley, CA 94709 USA
(e-mail: fangyuwu@berkeley.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2023.3259428.

Digital Object Identifier 10.1109/TASE.2023.3259428

as safety permits. Consequently, the proposed scheme incurs a
learning cost during the initial phase of the deployment but
usually becomes more adept on the task afterwards, leading to
amortized efficiency.

Index Terms— Model predictive control, neural networks,
robotics.

I. INTRODUCTION

MODEL predictive control (MPC) is a powerful method
for controlling dynamical systems with constraints [1],

[2]. It has been widely used in robotics, with applications
ranging from ground [3] and aerial [4] vehicle maneuvers to
humanoid [5] and quadruped [6] robot control.

When it comes to implement MPC, one has two con-
ventional approaches: 1) implicit MPC, which solves an
optimization problem in real time with a preferably efficient
problem formulation and numerical scheme, 2) explicit MPC,
which computes every solution of the optimization problem
via parametric optimization offline and looks up the computed
solutions online.

Explicit MPC often has faster running time than implicit
MPC but requires expensive pre-computation. For prob-
lems of many variables and of intricate constraints, such
pre-computation tends to demand a prohibitively large amount
of time and memory.

Alternatively, one can approximate an implicit MPC con-
troller with a neural network (NN) through supervised learn-
ing. Neural network models are more flexible when it comes to
pre-training and generally scales better to higher-dimensional
problems. Nevertheless, to our best knowledge, the NN func-
tion approximation approach has yet to fully address the
following open problems: 1) it is difficult, if not impossible,
to guarantee that the approximation will always converge to a
solution of bounded approximation errors; 2) it is challenging
to establish closed-loop stability without any knowledge of the
accuracy of the approximation.

Motivated by the above shortcomings of explicit MPC and
NN function approximation methods and inspired by [7],
we propose a triple-mode hybrid control scheme, named
Memory-Augmented MPC (MAMPC). The core idea is to mix
a costly MPC controller with an efficient linear quadratic
regulator (LQR) controller and an efficient NN controller,
whenever stability permits.

The simplicity of our method makes it possible for it to
be analyzed theoretically for stability. Such stability guar-
antee is not a common quality among works that involve

1545-5955 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7633-5910
https://orcid.org/0000-0003-3825-5853
https://orcid.org/0000-0002-6697-222X

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2089

neural networks but is a necessity for safety-critical applica-
tions. Moreover, unlike conventional explicit MPC or function
approximation methods, our method does not require any form
of pre-computing. Instead, it is operational on day one, in spite
of being inefficient, and learns to be efficient over time.

We summarize the main contributions of our work below.
• We present a novel controller design, i.e., Memory-

Augmented MPC, in its standard form and two modified
forms.

• We prove stability of Memory-Augmented MPC without
imposing any condition on the approximation errors of
the neural network.

• We demonstrate amortized computational efficiency
of Memory-Augmented MPC via four numerical
experiments.

II. RELATED WORKS

A major limitation of MPC has been a lack of computa-
tional efficiency as evident in applications such as the Atlas
humanoid robot [5] and the MIT Cheetah robot [6]. To over-
come this shortcoming, one typically has three approaches:
1) developing an efficient implicit MPC policy, 2) pre-
compiling an explicit MPC policy, and 3) approximating a
slow implicit MPC policy by an efficient surrogate policy such
as a NN.

Implicit MPC approach implements the MPC policy by
devising an efficient numerical algorithm for solving the
optimization program. This is perhaps the most common
approach of implementing an MPC policy. Efficient implicit
MPC controller often depends on custom optimization solvers
that leverage structures specific to the problems they solve,
such as [8] and [9]. Implementation of such implicit MPC is
usually done in a fast low-level programming language such
as C. For example, see [10], [11]. Moreover, recent advances
in software and hardware enable implicit MPC controllers to
be deployed in traditionally challenging problems, including
[12], [13], and [14].

When existing implicit MPC methods do not provide satis-
factory latency, one sometimes resorts to explicit MPC, when-
ever such alternative is applicable. Explicit MPC approach
implements the MPC policy by pre-computing the solution of
the optimization problem and looking up the solution in real
time. At its core, explicit methods achieve reduced running
time at the cost of expensive pre-computation and increased
memory footprint. To reduce memory footprint, numerous
works have been developed [15], [16]. Nevertheless, due to
poor scalability of the pre-computation step, explicit MPC has
more limited use cases than implicit MPC.

When the explicit MPC method fails to apply to a prob-
lem, one may consider another alternative, namely, function
approximation. Function approximation approach implements
an MPC policy by approximating the costly MPC control law
with an efficient surrogate model, such as a NN, and uses that
surrogate model for fast online deployment. Early works in
this direction include [17], [18], which has described how to
design a surrogate NN controller and has proposed conditions
to guarantee its closed-loop stability. Later development has
focused on guaranteeing different theoretical properties of the

NN-controlled closed-loop system. For example, [19] proposes
a NN method with probabilistic optimality bounds; [20] has
designed a projection operator that can modify a NN controller
to a stabilizing one for linear systems; and [21] proposes a
mixed-integer linear program to certify stability and feasibility
of ReLU-activated NN controllers. Besides, rather than replac-
ing the implicit MPC controller, [22] uses a NN to warm start
an optimization solver, which may then speed up convergence
of the implicit MPC solver. For a comprehensive study, readers
may consult [23]. Applications of function approximation
methods have found many successes in practice, such as [24].

It is worth noting that closed-loop stability of the function
approximation methods generally requires reasonable conver-
gence of NN model to the original implicit MPC control
law. Nevertheless, training a NN is commonly done through
a black-box solver, such as [25], the convergence of which
is generally not guaranteed. In contrary, we propose a novel
function approximation approach named Memory-Augmented
MPC, which is always stable and always guarantees constraint
satisfaction, without imposing any condition on the conver-
gence and optimality of the NN. The accuracy of the NN only
affects running time: the more accurate the NN is, the more
efficient the overall control scheme is. As a result, it can be
deployed without any training, with the expectation that it will
attain computational efficiency over time via learning.

As a final remark, a quick comparison of MAMPC with a
few key existing works is in order. We acknowledge that our
method is inspired by the seminal early work in dual-mode
MPC [7], which combines an MPC with a LQR. An advantage
of our approach over [7] is that it could potentially provide
more reduction in latency with the help of a fast intermediate
NN mode. As detailed in Section VI, with parallelization,
MAMPC is at worst equivalent to [7]. Moreover, compared
to the techniques in [20] and [22], which only apply to linear
plants with convex quadratic objectives, our method works for
any nonlinear problems.

III. COMPOSING MPC, LQR, AND NN

We begin the section by first introducing some basic nota-
tions, terminologies, and a key stability theorem of MPC. Next,
we present the standard construction in MAMPC, followed
by two variations of such construction, namely, alternating-
authority MAMPC and way-point MAMPC.

A. Basics of MPC

Consider the discrete-time time-invariant constrained
dynamical systems of the form

x[i + 1] = f (x[i],u[i]), i ∈ Z≥0 (1)

where

x[0] = x0 for some x0 ∈ Rn,

(x[i],u[i]) ∈ A, ∀i > 0,

where A ⊂ Rn
× Rm is a closed set defining the system

constraints, x[i] is the state at time index i , u[i] is the input at
time index i , f : Rn

×Rm
→ Rn is continuously differentiable

in both its components, with an equilibrium point at (0n , 0m),
Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

2090 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

i.e., f (0n, 0m) = 0n , and the linearized time-invariant system
of f (·, ·) around the equilibrium is stabilizable.

Let X be state constraint set and U be input constraint set.
We consider system constraints of the following form A :=

X × U. The system dynamics is a map f : A → X and any
control law is a map u : X → U.

Consider a finite planning and control horizon N . Let
X1:N

:= x[1], . . . , x[N]) be a trajectory of the system and
U0:N−1

:= u[0], . . . ,u[N − 1]) be the corresponding ordered
control sequence.

Provided with the dynamical system (1), an MPC is an
optimal control law implicitly defined through the following
set of optimization problems

min
X1:N

i ,U0:N−1
i

N−1∑
k=0

c(x[k|i],u[k|i])+ c f (x[N |i])

s.t.: x[0|i] = x[i],

x[k + 1|i] = f (x[k|i],u[k|i]),

(x[k|i],u[k|i]) ∈ A,
x[N |i] ∈ X f ,

k = 0, . . . , N − 1, (2)

where N is planning and control horizon, c : A → R+ is a
continuous stage cost function, c f : X f → R+ is a continuous
terminal cost function, x[k|i] is the predicted state k steps
ahead of present state x[i], u[k|i] is the anticipated input that
generates x[k + 1|i] from x[k|i], X1:N

i := x[1|i], . . . , x[N |i])
and U0:N−1

i := u[0|i], . . . ,u[N − 1|i]) are two sets of
optimization variables corresponding to predicted states and
anticipated inputs, X f is a terminal constraint set containing
the origin usually designed to guarantee asymptotic stability.
If optimization problem (2) is feasible and admits an optimal
solution (X1:N∗

i ,U0:N−1∗

i), then the MPC control law selects
the first element of U0:N−1∗

i as the input at time index i , that
is,

uMPC(x[i]) := u∗
[0|i] = U0:N−1∗

i [0]. (3)

This process is repeated at the next time index i + 1, until
some termination criterion is met. As a result, we obtain a
closed-loop system

x[i + 1] = f (x[i], uMPC(x[i])), i ∈ Z≥0, (4)

with initial condition x[0] = x0 ∈ X0 := x0 ∈ Rn
|

problem (2) is feasible} is the set of all admissible initial
states. For well-posedness of MPC, we require X ⊆ X0.

Let J (x[i]) :=
N−1
k=0 c(x[k|i],u[k|i]) + c f (x[N |i]) be the

cumulative cost and J ∗(x[i]) :=
N−1
k=0 c(x∗

[k|i],u∗
[k|i]) +

c f (x∗
[N |i]) be the optimal cumulative cost. By Lyapunov sta-

bility theorem, we can derive the following sufficient condition
for asymptotic stability of MPC as in Theorem 12.2 in [2].

Theorem 1 (Local Asymptotic Stability of MPC): Assume
that

• The stage cost and terminal cost are continuous and
positive definite.

• X f is control invariant.

• For all x ∈ X f ,

min
u:u∈U, f (x,u)∈X f

c(x,u)− c f (x)+ c f (f (x,u)) ≤ 0.

then the MPC problem (2) is persistently feasible and
the closed-loop system (4) is locally asymptotically stable
with respect to the origin. In addition, J ∗(·) is a Lya-
punov function and X0 is a positively invariant region of
attraction.

With the above definitions and theorem, we are ready to
describe the composition rules of MPC, LQR, and NN.

B. Composition Rules

Provided with a computationally costly implicit MPC uMPC
that satisfies Theorem (1), we propose a hybrid control
scheme, namely, Memory-Augmented Model Predictive Con-
trol (MAMPC), uMAMPC : X → U, by augmenting uMPC with a
LQR controller uLQR and a NN controller uNN, where the LQR
controller and the NN controller are independently developed
from the implicit MPC. We first describe how the LQR and
NN controllers are derived from the implicit MPC and then
present ways to combine these controllers.

1) LQR From MPC: Provided with an MPC, we derive
an infinite-time LQR controller by 1) linearizing the sys-
tem dynamics around the equilibrium, 2) removing stage
constraints, terminal constraint, and terminal cost, 3) taking
planning and control horizon N to ∞, and 4) replacing stage
cost c(·) with a positive definite quadratic cost, if it is not
already so in the original MPC.

Formally, the MPC-induced LQR problem is defined as
follows

min
X1:∞

i ,U0:∞

i

∞∑
k=0

x⊤
[k|i] Qx[k|i] + u⊤

[k|i]Ru[k|i]

s.t.: x[0|i] = x[i],

x[k + 1|i] = Ax[k|i] + Bu[k|i],

k ∈ Z+, (5)

where A := ∂ f ∂x|(0,0) ∈ Rn×n, B := ∂ f ∂u|(0,0) ∈ Rn×m

are linearized system dynamics around the equilibrium, and
Q ∈ {N ∈ Rn×n

| N ⪰ 0}, R ∈ {M ∈ Rm×m
| M ⪰

0} are weighting matrices that measure significance of state
deviations and control costs, respectively.

It can be shown that the optimal LQR control law for an
initial state x is a linear map

uLQR(x) = −Kx (6)

for some K ∈ Rm×n [26]. Furthermore, if the linearized system
(A, B) is stabilizable and if A − B K is Hurwitz, then the
closed-loop system

x[i + 1] = f (x[i], uLQR(x[i])), (7)

is locally asymptotically stable near the equilibrium with
a positively invariant region of attraction RLQR, as shown
in Theorem 4.7 in [27]. Specifically, RLQR is a set that if
x0 ∈ RLQR and x[0] = x0, then x[i] ∈ RLQR,∀i ∈ Z>0 and
limi→∞ x[i] = 0.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2091

Fig. 1. Schematics of the learning processes. (a) Imitation phase:
(x, uMPC(x)) provides data to train the NN controller uNN in a supervised
learning setting. (b) Adaptation phase (optional): uNN interacts with the envi-
ronment f (·, ·) to enhance control effectiveness in a reinforcement learning
setting.

As implied by local asymptotic stability, the largest possible
RLQR is nonempty in theory. In practice, however, estimating
RLQR is a challenging problem. To this end, several methods
have been proposed, such as [28], [29], and [30].

Because the LQR controller only requires one matrix
multiplication within a single controller step, it is usually
significantly more efficient than the implicit MPC in terms
of per-step computation. Hence, it is usually economical to
switch to the LQR controller when the state is in the region
of attraction of the LQR, that is, x[i] ∈ RLQR.

2) NN From MPC: Provided with an MPC, we derive a NN
controller 1) by imitating the MPC policy uMPC(x) through
supervised learning and 2) optionally by interacting with the
environment through reinforcement learning, as illustrated in
Figure 1.

In the imitation phase, the NN training is a supervised
learning problem usually of the following mean squared
form

min
W

1
M

∑
x∈D

∥uMPC(x)− φ(x | W)∥2
2, (8)

where φ : Rn
→ Rm is a NN model with weights W and D

is a set of M states randomly sampled from X0.
Therefore, the resulting NN control law is

uNN(x) := (x | W), (9)

where W is a suboptimal solution to problem (8), generally
estimated via a gradient method such as Adam [25].

In the adaptation phase, it is possible to fine tune the
NN further through a reinforcement learning (RL) algorithm.
A reasonable choice for environment may be the dynamic
model used by the MPC. A good choice of the reward
function may be the cost function of the MPC. The training
setup varies based on the specific choice of the RL algo-
rithm. For a comprehensive review of reinforcement learning
methods, please refer to [31]. We note that the adaptation
phase may be skipped if the imitation phase is sufficiently
effective or if the adaptation phase does not bring any
improvement.

In practice, people find that implicit MPC controllers can
be well approximated by a more efficient NN controller [17].
However, it is not easy to certify stability of the closed-loop
system without bounding approximation errors between the

NN controller and the original MPC controller.

x[i + 1] = f (x[i], uNN(x[i])). (10)

To solve the problem, we show that by composing the NN con-
troller with the MPC and the LQR in a hybrid control scheme,
we can prove the local asymptotic stability of the closed-loop
system, even if the NN is random. Next, we present the basic
form of our method, i.e., the standard MAMPC.

3) Standard Memory-Augmented MPC: The hybrid con-
trol scheme combines the LQR controller and the NN con-
troller with the original MPC controller. At every control
step, if the state is in the region of attraction of the LQR,
apply the LQR controller; else, we simulate the closed-loop
system (10) for up to NLQR steps: if there exists a step
j ≤ NLQR such that the state reaches within the region of
attraction of LQR and that up until the j th step the simulated
system does not violate any stage constraint of the MPC,
apply the NN controller; otherwise, if the state is within
the admissible initial states of the MPC, apply the implicit
MPC.

Formally, the hybrid controller is defined as follows

uMAMPC(x)

:=



uLQR(x), if x ∈ RLQR,

if x ∈ X0 \ RLQR and
uNN(x), ∃i = 1, . . . , NLQR, y[i] ∈ RLQR and

∀ j = 0, . . . , i, (y[j], uNN(y[j])) ∈ A,
uMPC(x), otherwise,

where y is the simulated state by numerically stepping: y[i] =

f (y[i − 1], uNN(y[i − 1])) with y[0] = x, RLQR is designed
to be a subset of X0, and NLQR ∈ Z>0 is the verification
horizon of RLQR. Note that compliance with state and input
constraints are satisfied by construction: we explicit check
constraint satisfaction via forward simulation.

As we show in Section IV, the stability of NN relies on
verifying whether the system reaches within RLQR through
forward simulation. However, this approach is ineffective for
systems that are sensitive to initial conditions and systems
that require a large number of steps to converge to the origin.
To address these two challenges, we introduce the following
two variants of MAMPC.

4) Alternating-Authority Memory-Augmented MPC: The
first variant of MAMPC is designed specifically for chaotic
systems. A chaotic system is loosely defined as a system that
is very sensitive to initial condition and control input. Qualita-
tively speaking, the same chaotic system that begins with two
slightly different initial conditions and control sequences will
arrive at significantly different terminal states. As a result, it is
very challenging to stabilize a chaotic system with any NN
controller because the function approximator will inevitably
produce random control errors which can easily deter the
system from its stabilizing trajectory. In this case, it is useful to
modify the hybrid control scheme to bound error accumulation
induced by the NN by periodically alternating between the NN
controller and the MPC controller. We name this modified
version of MAMPC as alternating-authority MAMPC, which

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

2092 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

is formally described below.

uAA
MAMPC(x)

:=



uLQR(x), if x ∈ RLQR,

if x ∈ X0 \ RLQR and
uNN(x), uNN(x) ∈ U ∧ y[1] ∈ X and

i (mod id) ̸= 0,
uMPC(x), otherwise,

where id ∈ Z≥1 is the period of MPC defaulting and RLQR ⊂

X0.
The main variation from the standard MAMPC is that we

do not verify if the system falls within RLQR in NLQR steps,
as forward simulation is not as reliable for chaotic systems.
This implies that id should be chosen as a small positive
number. Otherwise, prediction produced by forward simulation
will be a reliable estimate of the future. However, note that
reducing id will prolong running time. Therefore, a rule of
thumb of designing id should be to choose it as large as the
stability permits.

In addition, we remark that the closed-loop system has a
smaller region of attaction compared to standard MAMPC,
since we do not verify whether the system enters RLQR through
forward simulation.

5) Way-Point Memory-Augmented MPC: Another variant of
MAMPC is designed specifically for slow systems. A slow
system is loosely defined as a system that requires a substantial
number of steps to steer close to the origin. For slow systems,
it is difficult to choose an effective verification horizon NLQR: a
small NLQR may be too short to predict convergence of the NN
controller; a large NLQR may incur computational overhead
and thus render the hybrid control inefficient. To address
this problem, we propose a second variant of MAMPC by
introducing a “way-point” set, DWP, and enabling the NN
controller to be applied as long as the anticipated trajectory
falls with that way-point set. We name this variant of MAMPC
as way-point MAMPC, which is formulated as follows.

uWP
MAMPC(x)

:=



uLQR(x), if x ∈ RLQR,

if x ∈ DWP \ RLQR and
uNN(x), ∃i = 1, . . . NLQR, y[i] ∈ RLQR and

∀ j = 0, . . . i, (y[j], uNN(y[j])) ∈ AWP,

if x ∈ X0 \ DWP and
uNN(x), ∃i ∈ 1, . . . , NWP, y[i] ∈ DWP and

∀ j ∈ 0, . . . , i, (y[j], uNN(y[j])) ∈ A,
uMPC(x), otherwise,

where DWP is a compact set that contains RLQR, AWP :=

DWP × U, and NWP ∈ Z>0 is the verification horizon of DWP.
At minimum, we require that the way-point set contains

the region of attraction of the LQR, that is, RLQR ⊂ DWP.
Additional improvement of the way-point set design can be
performed through search. For example, one can parameterize
DWP with one or more parameters and search for a set
of parameters that produces the most efficient closed-loop
performance.

Besides, note that introduction of a way-point set may
reduce the area of the region of attraction of the closed-loop
system.

IV. THEORETICAL ANALYSIS

In this section, we prove the stability of the three MAMPC
methods proposed above. We also remark on the robustness
of the methods and the necessity of the fail-safe MPC mode.

A. Stability of MAMPC

We show that the three MAMPC methods are locally asymp-
totically stable with slightly different stability properties.
We first prove that standard MAMPC is locally asymptotically
stable in X0, as stated in the theorem below.

Theorem 2 (Stability of Standard MAMPC): For every
MPC problem of the form (2), there always exists a uMAMPC
of the form (11). Furthermore, the closed-loop system

x[i + 1] = f (x[i], uMAMPC(x[i])), i ∈ Z≥0, (11)

with x[0] = x0 ∈ X0 is locally asymptotically stable in X0.
Proof: See Appendix A. □

To provide geometric intuition on how a MAMPC achieves
local asymptotic stability, we illustrate schematically in
Figure 2a how a MAMPC could steer a system from an initial
state to the equilibrium at zero. A state in RMPC is first steered
by uMPC into RNN, which is then steered by uNN into RLQR,
after which is steered to zero by uLQR. Note that the example
demonstrated in Figure 2a is only a hypothetical particular
case of MAMPC closed-loop behaviors.

Next, for alternating-authority MAMPC, the closed-loop
system no longer has guaranteed local asymptotic stability
in X0, because it does not check whether NN shoots inside
RLQR. Rather, we can only show that the system is locally
asymptotically stable in RLQR and will never escape X0,
as stated the theorem below.

Theorem 3 (Stability of Alternating-Authority MAMPC):
For every MPC problem of the form (2), there always exists
a uAA

MAMPC of the form (11). Furthermore, the closed-loop
system

x[i + 1] = f
(
x[i], uAA

MAMPC(x[i])
)
, i ∈ Z≥0, (12)

with x[0] = x0 ∈ X0 is locally asymptotically stable in RLQR.
Besides, for every initial condition x[0] ∈ X0, x[i] ∈ X0 for
all i ∈ Z+.

Proof: See Appendix B. □
An illustration of how the alternating-authority MAMPC

could steer a system to the equilibrium is provided in
Figure 2b. Note that marginal stability may be an understate-
ment in practice: a well-trained NN, combined with a modest
alternation period id , could very well result in a closed-loop
system that is asymptotically stable.

If analytical guarantee of asymptotic stability in the entire
X0 is absolutely required, one can replace the admissible
control set X0 with a time-varying set S[i], where

RLQR ⊂ S[i + 1] ⊂ S[i] ⊂ X0, ∀i = 1, . . . , n − 1, (13)

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2093

Fig. 2. An illustrative example of how different variants of MAMPC could steer a system toward equilibrium. (a) Standard MAMPC: a triple-mode hybrid
control composed of an MPC, a NN, and a LQR. (b) Alternating-authority MAMPC: a variant of the standard MAMPC, modified for chaotic systems.
(c) Way-point MAMPC: a variant of the standard MAMPC, modified for slow systems. Solid red regions represent X0; solid green regions represent RNN;
green dots indicate periodic controller switching region in alternating-authority MAMPC; and solid blue regions represent RLQR. A black dot represents a
state and an arrow represents a controlled state transition. The color of arrows indicates which sub-controller is invoked during that control step: red is MPC;
green is NN; and blue is LQR. The yellow line represents ∂DWP. Note that the above examples by no means exhaustive. For instance, it is possible that
RNN = ∅.

for some n ∈ Z>1 with S[0] = X0 and S[n] = RLQR.
Geometrically, S can be viewed as a set that gets successively
shrunk from X0 toward RLQR. Such design will invoke the
fail-safe MPC if the systems is “stuck” outside of RLQR.

Lastly, similar to alternating-authority MAMPC, the
closed-loop system of a way-point MAMPC is locally asymp-
totically stable in RLQR and will eventually enter and stay
within a level set that escribes DWP, as stated in the following
theorem.

Theorem 4 (Stability of Way-Point MAMPC): For every
MPC problem of the form (2), there always exists a uWP

MAMPC
of the form (11). Furthermore, the closed-loop system

x[i + 1] = f
(
x[i], uWP

MAMPC(x[i])
)
, i ∈ Z≥0, (14)

with x[0] = x0 ∈ X0 is locally asymptotically stable in RLQR.
Besides, there exists a time index j ∈ Z≥0 such that for all
i ≥ j

x[i] ∈ D+

WP := x ∈ Rn
| V (x) < max

q∈∂DWP

V (x)},

where V : Rn
→ R+ is a Lyapunov function of the closed-

loop system (4) and ∂DWP is the boundary of the compact set
DWP that by construction contains RLQR.

Proof: See Appendix C. □
An illustration of how the way-point MAMPC could steer

a system to the equilibrium is provided in Figure 2c. As in the
alternating-authority MAMPC, to always achieve asymptotic
stability, one can successively shrink DWP until DWP = RLQR
in the same way as presented in equation (13).

B. Remark on Robustness

MAMPC may be robustified to account for model uncertain-
ties using the idea of bounding error margin. We demonstrate
such robustification procedure by applying it to the standard
MAMPC.

Let the true system dynamics be f . We distinguish f̄ as the
model of the dynamical system. Define the model uncertainties
of a controller u with initial condition x[i] at time step i + k
as

1xu[k|i] := y[k] − ȳ[k],

where

y[0] = x[i], y[k] = f (y[k − 1], u(y[k − 1])),

ȳ[0] = x[i], ȳ[k] = f̄ (ȳ[k − 1], u(ȳ[k − 1])).

When ∥1xu[k|i]∥ = α > 0, it is possible that y[k] /∈ RLQR
but ȳ[k] ∈ RLQR, potentially leading to a failure of MAMPC.
To address this problem, we define a set operator Eroδ as
follows

Eroδ(X) := x ∈ X | ∥x − q∥ ≥ δ,∀q ∈ ∂X} for some δ > 0,

where X is an arbitrary set and ∂X denotes the boundary of
the set X. We claim that for ∥1xu[k|i]∥ = α > 0, if ȳ[k] ∈

Eroδ(RLQR) with δ ≥ α, then there must be y[k] ∈ RLQR. Proof
of the claim is a direct application of the triangle inequality
of norm. We can therefore incorporate the set operator Eroδ
to enhance the robustness of MAMPC with respect to model
uncertainties.

We can apply the above procedure to robustify the standard
MAMPC as follows

uδMAMPC(x)

:=



uLQR(x), x ∈ RLQR,

x ∈ X0 \ RLQR,

uNN(x), ∃i = 1, . . . , NLQR, ȳ[i] ∈ Rδ
LQR,

∀ j = 0, . . . , j, (ȳ[j], uNN(ȳ[j])) ∈ Aδ

uMPC(x), otherwise,

where Rδ
LQR :=δ (RLQR) and Aδ

:=δ (X)×U, for some δ > 0.
Here, δ can be viewed geometrically as a margin of robustness.

The stability of the above robustified MAMPC is stated in
the following theorem.

Theorem 5 (Robustification of Standard MAMPC):
Suppose the model uncertainties are upper bounded by some
α > 0, that is,

∥1xu[k|i]∥ ≤ α, ∀i ∈ Z≥0,∀k = 0, . . . , NLQR.

Then the following closed-loop system

x[i + 1] = f (x[i], uαMAMPC(x[i])), i ∈ Z≥0,

with x[0] = x0 ∈ X0 is locally asymptotically stable in X0.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

2094 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

Proof: The proof is identical to that of Theorem 2.
Note that it possible that Rδ

LQR = ∅. In this case, the hybrid
control is virtually equivalent to a dual-mode MPC-LQR
controller. □
Similar to the above example, the robustification procedure can
also be applied to enhance the alternating-authority MAMPC
and way-point MAMPC.

C. Remark on Necessity of Fail-Safe MPC

The hybrid control scheme can be clearly more efficient if
we can skip the forward verification and remove the fail-safe
MPC mode. In light of this observation, we describe a condi-
tion, where the fail-safe MPC mode will never be invoked and
thus can be safely removed from the hybrid control scheme.

Define the following “fail-free” MAMPC

u+

MAMPC(x) :=

{
uLQR(x), x ∈ RLQR,

uNN(x) x ∈ X0 \ RLQR.

Let L : X → R+ be an augmented cumulative cost function
of NN, that is,

L(x) :=
N−1
k=0 c(y[k], uNN(y[k]))+ c f (y[N]),

with

y[0] = x, y[k] = f (y[k − 1], uNN(y[k − 1])).

From Theorem 13.1 in [2], we are ready to state the
condition in the following theorem.

Theorem 6 (Fail-Free MAMPC): If there exists some non-
negative function γ : X0 → R+ such that

(x, uNN(x)) ∈ A, ∀x ∈ X0,

L(x) ≤ J ∗(x)+ γ (x), ∀x ∈ X0,

γ (x)− c(x, 0) < 0, ∀x ∈ X0 \ 0, (15)

then the closed-loop system

x[i + 1] = f (x[i], u+

MAMPC(x[i])), i ∈ Z≥0,

with x[0] = x0 ∈ X0 is locally asymptotically stable in
X0 without violating any constraints in the original MPC
problem (2).

Proof: The proof of the theorem is a direct application
of Theorem 13.1 in [2]. □

Note that the inequality conditions in (15) are typically
verified through sampling and interpolation [2], which makes
this approach only suitable for relatively simple, moderately
sized problems. Besides, the above theorem is only a sufficient
condition and other sufficient conditions are possible too. For
example, see [32], [33].

Last but not least, we emphasize that all the analysis above
does not impose any condition on the approximation error of
the NN. So long as the NN has the right input and output
dimensions, the corresponding MAMPC will be closed-loop
stable, even if the weights of the NN are random. In the worst
case, MAMPC reduces to a hybrid controller consisting of
just the MPC and the LQR, where the NN mode will never be
invoked. This reduced hybrid controller is virtually identical
to the one proposed in [7], despite of having slightly different
running time performance.

Fig. 3. Diagram of a pendulum model. A torque between [−0.05, 0.05] N·m
is being applied to the hinge to keep the pendulum at its inverted position.

V. NUMERICAL EXPERIMENTS

To evaluate the running time performance of MAMPC,
we conduct four numerical experiments on controlling a pen-
dulum, a triple pendulum, a bicopter, and a quadcopter. The
models are selected for their relevance in industrial robotic
applications: Pendulum models are the building blocks for
robot arm manipulation, while copter models are important
model classes in unmanned aerial vehicle control. Performance
and efficiency of MAMPC are evaluated through comparison
with the corresponding baseline implicit MPC. In addition
to the four experiments, a short numerical simulation is
appended to the end of the section to demonstrate the notion
of robustness margin.

All computations were conducted on an Intel Core
i7-1065G7 CPU machine. Implementation is done via
MATLAB. The following paragraphs highlight the key param-
eters and results of the four experiments. For implementation
details, please refer to the source code at [34].

A. Pendulum

The first model is a single-arm pendulum as shown in
Figure 3. The goal is to maintain the pendulum at the position
of the highest potential energy as marked by the dashed line.

The state is defined as x := θ θ̇]⊤ ∈ [−π, π) × R,
where θ is the angular displacement from the inverted position.
The input is a scalar u ∈ R, which is a bounded torque
applied at the joint. The control objective is to steer the
pendulum to the origin through the limited torque actuator
u ∈ [−0.05, 0.05] N · m at the joint.

The MPC design highlights a sampling interval of 0.1 s,
a planning horizon N = 5, and three optimization variables
per step, resulting in a linearly-constrained quadratic pro-
gramming (LCQP) of 0.5 s prediction horizon and 15 vari-
ables. Plant nonlinearity is handled through linearizing
around the equilibrium, leading to a linear time-invariant
system.

We apply a standard MAMPC to control the pendulum with

RLQR = {x ∈ R2
| ∥x∥2 ≤ 0.5}, NLQR = 5.

The NN is a two-layer, 20-neuron multilayer perceptron
(MLP) trained through supervised learning with data uni-
formly randomly sampled from θ ∈ [π, π], θ̇ ∈ [−1, 1].
Details of the NN architecture can be found in Table III in
the Appendix.

Performance and efficiency of MAMPC, at various stages
of training, is illustrated in Figure 4. The total and per-step

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2095

Fig. 4. Application of standard MAMPC to the pendulum problem. τ is
running time. x is selected states and u is selected inputs. t is simulation
time. At initialization, the NN mode fails forward verification and thus never
get invoked. As the NN is being trained, its likelihood of passing forward
verification increases. At last, a well trained NN takes over most of MPC
steps, resulting in a more efficient operation.

Fig. 5. Diagram of a triple pendulum model. Note that the centers of mass
of the first and second torques coincide with the second and third joints.
A torque between [−1, 1] N · m is being applied to each joint to keep the
triple pendulum at its inverted position.

running times of MAMPC are summarized in the first columns
of Table I and Table II, respectively.

Please note that if even though the running times of implicit
MPC and NN appear constant in Figure 4, they are in fact
time-varying if we zoom in. This applies to the other three
systems below.

B. Triple Pendulum

The second model is a triple pendulum as shown in Figure 5,
which extends the above pendulum model to a more complex
use case. The goal is to maintain the triple pendulum at the
position of the highest potential energy.

The state is defined as x := θ1 θ̇1 θ2 θ̇2 θ3 θ̇3]
⊤

∈

([−π, π)×R)3, where θ1, θ2, θ3 are the angular displacements

Fig. 6. Application of alternating-authority MAMPC to the triple pendulum
problem. τ is running time. x is selected states and u is selected inputs. t is
simulation time. At initialization, the NN mode fails forward verification and
thus never get invoked. As the NN is being trained, its likelihood of passing
forward verification increases. At last, a well trained NN takes over most of
MPC steps, resulting in a more efficient operation.

of the three links respectively. The input is defined as u :=

u1 u2 u3] ∈ R3, which is the applied torques at the three
joints respectively. The control objective is to steer the triple
pendulum to the origin by applying three limited torque inputs
u1, u2, u3 ∈ [−1, 1] N · m at the three joints, respectively.

The MPC design highlights a sampling interval of 0.1 s,
a planning horizon N = 5, and nine optimization variables
per step, resulting in a LCQP of 0.5 s prediction horizon
and 45 variables. Linearization is applied as before to handle
nonlinearity.

Because triple pendulum is a chaotic system, we apply an
alternating-authority MAMPC instead of standard MAMPC
with

RLQR = {x ∈ R6
| ∥x∥2 ≤ 0.4}, NLQR = 5, id = 2.

The NN features a three-layer, 50-neuron MLP trained through
supervised learning with data uniformly randomly sampled
from

θ1, θ2, θ3 ∈ [−π/6, π/6], θ̇1, θ̇2, θ̇3 ∈ [−1, 1].

Details of the NN architecture can be found in Table III in the
Appendix.

Performance and efficiency of MAMPC, at various stages
of training, is illustrated in Figure 6. The total and per-step
running times of MAMPC are summarized in the second
columns of Table I and Table II, respectively.

Lastly, note that running times of implicit MPC is repre-
sented as constant lines when in reality it is decreasing with
time. For readability, we choose to use the median of the

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

2096 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

Fig. 7. Diagram of a bicopter model. Each of the two propellers is capable
of generating a thrust between 0.1 N and 9.1572 N to keep the copter hover in
air. The thrust limits are chosen such that hovering thrusts are approximately
in the center of the thrust limit.

varying running times to represent it as they are orders of
magnitude larger than NN and MAMPC and look like constant
in log scale.

C. Bicopter

The third model is a bicopter as shown in Figure 7. The
goal is to hover the bicopter in air.

The state is defined as x := x ẋ y ẏ θ θ̇]⊤ ∈

R4
× ([−π, π) × R), where x, y are horizontal and vertical

translations and θ is the angle of tilting. The input is defined
as u := u1 u2]

⊤
∈ R2, where u1, u2 are the thrust exerted by

the left and right propellers, respectively. The control objective
is to steer the bicopter to the origin by applying limited thrusts
u1, u2 ∈ [0.1, 9.1572] N at the two propellers.

The MPC design highlights a sampling interval of 0.1 s,
a planning horizon N = 20, and eight optimization variables
per step, resulting in a LCQP of 2.0 s prediction horizon and
160 variables. To handle plant nonlinearity, we linearize the
system around the equilibrium.

We apply a standard MAMPC to control the bicopter with

RLQR = {x ∈ R6
| ∥x∥2 ≤ 0.5}, NLQR = 10.

The NN is a three-layer, 50-neuron MLP trained through
supervised learning with data uniformly randomly sampled
from

x, y, θ ∈ [−π/2, π/2], ẋ, ẏ, θ̇ ∈ [−1, 1].

Details of the NN architecture can be found in Table III in the
Appendix.

Performance and efficiency of MAMPC, at various stages of
training, is illustrated in Figure 8. The total and per-step run-
ning times of MAMPC are summarized in the third columns
of Table I and Table II, respectively.

D. Quadcopter

As an extension to the ideal bicopter model, the last model is
a quadcopter as shown in Figure 9 [4]. The goal is also to hover
the copter in air but with more realistic system dynamics.

The state is defined as x := x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]
⊤

∈

R6
× ([−π, π) × R)3, where x, y, z represent translations

and φ, θ, ψ represent rotations corresponding to the three
ZYX Euler angles roll, pitch, and yaw. The input is u =

[u1 u2 u3 u4]
⊤

∈ R4, where ui is the rotational speeds
of the i th propeller for i = 1, 2, 3, 4. The control objective
is to steer the quadcopter to the origin by applying bounded
rotations u1, u2, u3, u4 ∈ [0, 313.96] in rad · s−1 at the four
propellers.

Fig. 8. Application of standard MAMPC to the bicopter problem. τ is
running time. x is selected states and u is selected inputs. t is simulation
time. At initialization, the NN mode fails forward verification and thus never
get invoked. As the NN is being trained, its likelihood of passing forward
verification increases. At last, a well trained NN takes over most of MPC
steps, resulting in a more efficient operation.

Fig. 9. Diagram of a quadcopter model. Each of the four propellers is capable
of rotating at speed between 0 rad · s−1 and 313.96 rad · s−1 to keep the copter
hover in air. The rotor limits are chosen such that hovering rotor rotations are
approximately in the center of the rotation range.

The MPC design highlights a sampling interval of 0.1 s,
a planning horizon N = 20, and 16 optimization variables
per step, resulting in a LCQP of 2.0 s prediction horizon and
320 variables. Nonlinearity is handled by linearization around
the equilibrium.

Because the closed-loop quadcopter dynamics with MPC
takes many steps to converge, we choose a way-point MAMPC
with

DWP = {x ∈ R12
| ∥x∥2 ≤ 2}, NWP = 10,

RLQR = {x ∈ R12
| ∥x∥2 ≤ 0.5}, NLQR = 10.

The NN features a four-layer, 60-neuron MLP trained through
supervised learning with data uniformly randomly sampled
from

x, y, z ∈ [−0.5, 0.5], ẋ, ẏ, ż ∈ [−0.1, 0.1],

φ, θ ∈ [−π/6, π/6], ψ ∈ [−π/4, π/4], φ̇, θ̇ , ψ̇ ∈ [−0.1, 0.1].

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2097

Fig. 10. Application of way-point MAMPC to the quadcopter problem.
τ is running time. x is selected states and u is selected inputs. t is simulation
time. At initialization, the NN mode fails forward verification and thus never
get invoked. As the NN is being trained, its likelihood of passing forward
verification increases. At last, a well trained NN takes over most of MPC
steps, resulting in a more efficient operation.

Details of the NN architecture can be found in Table III in the
Appendix.

Performance and efficiency of MAMPC, at various stages
of training, is illustrated in Figure 10. The total and per-step
running times of MAMPC are summarized in the last columns
of Table I and Table II, respectively.

E. Robustness Margin

Lastly, we present how RLQR can be shrunk to enhance the
controller robustness with respect to model uncertainty.

Consider the pendulum model presented above. Denote the
pendulum system model as ẋ = f̄ (x). Suppose there is an
external disturbance which alters the system into ẋ = f (x) :=

f (x) + 1 · b with b > 0 being a constant bias term. Let the
true system trajectory be x(t) and the trajectory predicted by
f̄ (·) be x̄(t).

Define RLQR = {x ∈ R2
| ∥x∥2 ≤ 0.35}. Simulating both

systems from the same initial condition x0 = [0.65 − 4]
⊤ and

b = 0.2, we obtain the result shown in Figure 11.
From the simulation result, we learn that the true system

does not enter RLQR until the modeled system enters Rδ
LQR

with δ = 0.2. Hence, δ can be considered as a margin of
robustness. That is, if we verify x̄ ∈ Rδ

LQR, we can ensure that
x ∈ RLQR despite the lack of the bias term 1 · b in f̄ (·).

VI. DISCUSSIONS

As shown in Figure 4, Figure 6, Figure 8, and Figure 10
and in Table I, the MAMPC gains efficiency over time through

TABLE I
SUMMARY OF TOTAL RUNNING TIME IN MILLISECOND

TABLE II
SUMMARY OF PER-STEP RUNNING TIME IN MIRCOSECOND

Fig. 11. Illustration of robustness margin. The true system f (·) enters RLQR
when the modeled system f̄ (·) enters RδLQR. Here, δ maybe viewed as a notion
of robustness margin.

learning on the trajectory data generated by the implicit MPC
policy. Upon initialization, the MAMPC policy, despite of
not being the most efficient, is immediately functional. After
learning on a few samples, the NN mode behaves closer to
the MPC mode but still lacks in accuracy. This period of
learning sometimes results an temporary degradation in control
efficacy and an temporary increase in running time. In partic-
ular, see Figure 4 and Figure 6. After training on sufficient
number of samples, the NN mode eventually converges to
and takes over the implicit MPC. Consequently, the overall
control efficacy is recovered and computational efficiency
improved.

After the NN mode converges, the resulting MAMPC is
shown to have superior amortized running time but an inferior
worst-case running time. As the shown in the first four rows
of Table II, the LQR mode and NN mode of MAMPC is faster
than implicit MPC, while the MPC mode of MAMPC is slower
than the implicit method due to overhead from computing the
switch conditions. Therefore, in the worst case, the MAMPC
will take more time to stabilize the plant than the implicit
MPC. However, if the MAMPC spends sufficient number of
steps in the NN and LQR modes, it will still has faster average
running time, which is the case observed in the four numerical
experiments.

If the target system is capable of parallel computation,
it is possible the reduce the worst-time running time down to
the baseline running time of the implicit MPC. For example,
a possible parallelization strategy for standard MAMPC is as
follows: 1) compute the three control modes of MAMPC in

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

2098 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

three parallel threads, 2) among those that pass their corre-
sponding switch conditions, execute whichever that finishes
first, and 3) reset and repeat for next control step. Ignoring
communication overhead, one can show that the worst-case
running time is roughly identical to that of the implicit MPC.
Note that under this setup the MAMPC scheme is at worst
equivalent to the dual-mode MPC in [7].

Of course, it should be noted that there is no guarantee
that the resulting MAMPC will be more efficient than the
implicit MPC, because there is no guarantee that the NN
will converge to an accurate surrogate policy. Comparing
to methods like [19], where the implicit MPC controller is
completely replaced by a NN controller, we trade a lack of
deterministic guarantee on stability for a lack of deterministic
guarantee on running time improvement. We believe that
such a trade-off is often desirable in practice: in industrial
applications, safety almost always precedes efficiency.

Beyond the direct implications of the experiments, we make
following remarks on set design, forward verification, addi-
tional running time optimizations, and limitations.

1) Set Design: Identification and design of feasibility set
X0 and attraction set RLQR is very challenging. One hand,
it is easier to just approximate them by conservative set
estimates for robustness measures. For example, one can
replace X0 and RLQR with X−

0 and R−

LQR, where X−

0 ⊂ X0

and R−

LQR ⊂ RLQR. On the other hand, however, to guarantee
computational efficiency, one should make sets RLQR,RNN
as large as possible. This way, faster modes of MAMPC
get invoked more frequently than the slow, default mode of
MAMPC, leading to a more efficient amortized running time
performance. Conservative set design makes the system more
robust to model uncertainties but also slower in running time.
Balancing the trade-off between latency and robustness is
therefore a design process.

2) Forward Verification: The horizon used in forward verifi-
cation immediately affects the maximum possible running time
of the MAMPC. A valid verification horizon should not make
the running time of the MPC mode longer than the maximum
allowable computational latency. Moreover, an additional rule
of thumb is to choose a verification horizon such that the
maximum possible running time of NN mode is on par with
the running time of the implicit MPC.

The simulation method used for forward verification also
directly impacts the worst-case latency of the MAMPC. For
continuous plants, we recommend to use forward Euler method
with a sampling time that is as large as possible and to use
a conservative set design to absorb integration errors. Like
designing sets, choosing the right sampling time is a balancing
act between latency and robustness.

3) Additional Optimizations: For small to moderately sized
problems, we may consider developing a fail-free MAMPC
as specified in Theorem 6, since it will further speed up
computation. Fail-free MAMPC prevents controller from ever
having to default to fail-safe mode and therefore skips the
routine computation of forward verification in NN mode.
It significantly improves the amortized and worst-case running
time.

Another possibility for reducing running time is to
pre-compute the results of forward verification for the entire
state space offline and look up the results online. This look-
up table approach is in spirit similar to explicit MPC. The
complexity of this approach also grows exponentially with
state dimension, so it suffers the similar scalability issue like
explicit MPC does.

Of course, a third possibility for reducing running time is to
speed up computation of the trained neural network through
techniques such as quantization, pruning, or model distillation.

It is sometimes useful to further improve the performance
of the NN mode via unsupervised reinforcement learning. This
is usually the case when the default implicit MPC solver is
sub-optimal, typically due to lack of convexity in the objective
or constraints or due to large problem dimension induced by
a long prediction horizon.

Finally, one could leverage warm-started MPC with our
method for enhanced performance. Warm-started MPC meth-
ods like [22] aim to use a NN to speed up the solving
of an implicit MPC, while MAMPC seeks to replace the
implicit MPC with a NN or a LQR. Consequently, one could
directly combine the two techniques together by substituting
the standard implicit MPC in a MAMPC with a warm-started
implicit MPC.

VII. CONCLUSION

To improve amortized computational efficiency of MPC,
we have developed a triple-mode hybrid control named
MAMPC. Stability of MAMPC is guaranteed via forward
simulation, while efficiency is achieved by replacing MPC
with a more efficient NN or LQR, whenever stability permits.
Numerical experiments indicate that MAMPC often has a
better amortized running time but a slightly prolonged worst-
case per-step running time compared to implicit MPC method.

APPENDIX

A. Proof of Theorem 2

Proof: Existence of MAMPC depends on existence of
LQR and NN. A LQR controller of the form (5) can always be
derived from (2) because 1) f is continuously differentiable,
so it can always be linearized to produce the A, B matrices
in (5); 2) the linearized system (A, B) is by assumption
stabilizable, so region of attraction of LQR is nonempty, i.e.,
RLQR ̸= ∅; 3) as for Q, R we only require Q ⪰ 0, R ≻ 0,
which is always possible; 4) lastly, optimization problem (5) is
just a relaxation of problem (2), which can always be solved.

Meanwhile, a NN controller trivially exists because we do
not require NN to satisfy any properties other than the basic
definition of a NN. This completes the first part of the proof
on existence.

To prove local asymptotic stability of standard MAMPC in
X0, we partition X0 into three regions as follows

X0 = RLQR ∪ RNN ∪ RMPC,

where RNN is the set of states where the NN is
invoked and RMPC is the rest of states in X0, i.e.,

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2099

RMPC := X0 \ (RLQR ∪ RNN). By construction, RLQR, RNN,
and RMPC are mutually disjoint.

For every state x[0] ∈ RLQR, uLQR is invoked and the closed-
loop system (11) will be equivalent to (7), which is locally
asymptotically stable.

For every state x[0] ∈ RNN, uNN is invoked and the closed-
loop system (11) will be equivalent to (10) until the state
enters RLQR in no more than NLQR steps. The system will
stay in RLQR and will be taken to the origin by uLQR as
i → ∞. Consequently, the closed-loop system (11) is locally
asymptotically stable in RMPC ∪ RNN.

For every state x[0] ∈ RMPC, uMPC is invoked and the
closed-loop system (11) will be equivalent to (4) for at least
one time step. In the next time step, if the state enters
RLQR ∪ RNN, then the closed-loop system will converge to
the origin as it is locally asymptotically stable in RLQR ∪RNN;
otherwise, RMPC will be invoked again. Because the closed-
loop system (4) is locally asymptotically stable, even if MPC
never brings the state into RNN, it will eventually steer the
system into RLQR in finite time, which will then be taken to
the origin by uLQR. Consequently, the closed-loop system (11)
is locally asymptotically stable in X0. □

B. Proof of Theorem 3

Proof: The first part of the proof on existence is identical
to the one in Theorem 2.

To prove stability of alternating-authority MAMPC, we par-
tition X0 into two disjoint regions X0 = RLQR ∪ RAA, where
RAA := X0 \ RLQR.

For every state x[0] ∈ RLQR, the closed-loop system (12)
is identical to closed-loop system (11), which is locally
asymptotically stable, as shown in Theorem (2).

Next, we prove by contradiction that the system will never
escape X0. Suppose there exits an escaping control ū such that
x̄ ∈ X0 but f (x̄, ū) /∈ X0. This escaping control ū must be
produced by either uMPC, uNN, or uLQR, that is, ū = uMPC(x̄),
ū = uNN(x̄), or ū = uLQR(x̄). If ū = uMPC(x̄), then uMPC is not
persistently feasible in X0, which is not possible because we
assume that uMPC satisfies Theorem (1). If ū = uNN(x̄), then
the following switch condition must hold: f (x̄, ū) ∈ X ⊆ X0.
However, this is not possible since ū is assumed to be an
escaping control, that is, f (x̄, ū) /∈ X0. If ū = uLQR(x̄),
then there must be x̄ ∈ RLQR. Since RLQR is positively
invariant, we must have f (x̄, ū) ∈ RLQR ⊂ X0, which is not
possible since f (x̄, ū) /∈ X0. Therefore, the system will never
escape X0. □

C. Proof of Theorem 4

Proof: The first part of the proof on existence is identical
to the one in Theorem 2.

To prove stability of way-point MAMPC, we partition X0
into five disjoint regions as follows

X0 = RLQR ∪ Ri
NN ∪ Ri

MPC ∪ Ro
NN ∪ Ro

MPC,

where Ri
NN is the set of states in or on the boundary of DWP

where the NN is invoked; Ro
NN is the set of states in X0 \DWP

TABLE III
NEURAL NETWORKS ARCHITECTURE

where the NN is invoked; Ri
MPC := DWP \ (RLQR ∪ Ri

NN); and
Ro

MPC := X0 \ DWP) \ Ro
NN.

For every state x ∈ RLQR, the closed-loop system (14) is
identical to closed-loop system (11), which is locally asymp-
totically stable, as shown in Theorem (2).

Next, we prove that the system will eventually enter and
stay within D+

WP.
For every state x[0] ∈ X0 \ DWP, either NN or MPC will

steer the system into D+

WP in finite time. If NN is ever invoked,
the system (14) will be taken into DWP in no more than NWP
steps. Otherwise, MPC will bring the system (14) into DWP
in finite time since the MPC is locally asymptotically stable
in X0.

For every state x[0] ∈ DWP, we prove by contradiction that
there exists a j ≥ 0 such that for all i ≥ j, x[i] ∈ D+

WP.
Suppose there exists a x[0] = x̄ ∈ DWP such that for every
k ≥ 0, there exists an i ≥ k such that x[i] /∈ D+

WP. Without
loss of generality, define a control ū such that x[i − 1] ∈ D+

WP
but x[i] = f (x[i − 1], ū) /∈ D+

WP.
This escaping control ū must be produced by either uMPC,

uNN, or uLQR, that is, ū = uMPC(x[i − 1]), ū = uNN(x[i − 1]),
or ū = uLQR(x[i − 1]). If ū = uMPC(x[i − 1]), then the close-
loop system (14) is equivalent to system (4). Because x[i] /∈
D+

WP, we have

V (x[i]) = V (f (x[i − 1], uMPC(x[i − 1])) > V (x[i − 1]),

but this is not possible because V is a Lyapunov function of
the system (4), i.e.,

V (f (x[i − 1], uMPC(x[i − 1])) ≤ V (x[i − 1]).

If ū = uNN(x[i − 1]), then f (x[i − 1], uNN(x[i − 1])) /∈ DWP,
which is not possible because invocation of NN implies that
f (x[i − 1], uNN(x[i − 1])) ∈ DWP. If ū = uLQR(x[i − 1]),
then by assumption limi→∞ x[i] does not exist. However,
this is impossible because limi→∞ x[i] = 0 by the local

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

2100 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 21, NO. 2, APRIL 2024

asymptotic stability of the system (14) in RLQR. Consequently,
the assumption must be false. □

D. Architecture of Neural Networks

Please find the details of neural network designs in
Tables III. All networks are multilayer perceptrons with mean
square loss and are trained with the Levenberg-Marquardt
algorithm.

REFERENCES

[1] B. J. Rawlings, Q. D. Mayne, and M. M. Diehl, Model Predictive
Control: Theory, Computation and Design. Santa Barbara, CA, USA:
Nob Hill Publishing, 2017.

[2] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[3] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC-
based approach to active steering for autonomous vehicle systems,” Int.
J. Veh. Auto. Syst., vol. 3, nos. 2–4, pp. 265–291, 2005.

[4] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Model predictive quadro-
tor control: Attitude, altitude and position experimental studies,” IET,
Control Theory Appl., vol. 6, no. 12, pp. 1812–1827, Aug. 2012.

[5] S. Kuindersma et al., “Optimization-based locomotion planning, estima-
tion, and control design for the atlas humanoid robot,” Auton. Robots,
vol. 40, no. 3, pp. 429–455, Mar. 2016.

[6] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and
S. Kim, “MIT Cheetah 3: Design and control of a robust, dynamic
quadruped robot,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2018, pp. 2245–2252.

[7] H. Michalska and D. Q. Mayne, “Robust receding horizon control of
constrained nonlinear systems,” IEEE Trans. Autom. Control, vol. 38,
no. 11, pp. 1623–1633, Nov. 1993.

[8] M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM J. Control
Optim., vol. 43, no. 5, pp. 1714–1736, Jul. 2005.

[9] C. Mastalli et al., “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2020, pp. 2536–2542.

[10] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear MPC in the microsecond range,”
Automatica, vol. 47, no. 10, pp. 2279–2285, Oct. 2011.

[11] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optim. Eng., vol. 13, no. 1, pp. 1–27, 2012.

[12] S. Richter, C. N. Jones, and M. Morari, “Real-time input-constrained
MPC using fast gradient methods,” in Proc. 48h IEEE Conf. Decis.
Control (CDC) 28th Chin. Control Conf., Dec. 2009, pp. 7387–7393.

[13] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation
of nonlinear model predictive path-following control for an industrial
robot,” IEEE Trans. Control Syst. Tech., vol. 25, no. 4, pp. 1505–1511,
Jul. 2017.

[14] S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti, “High-
frequency nonlinear model predictive control of a manipulator,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2021, pp. 7330–7336.

[15] S. Summers, C. N. Jones, J. Lygeros, and M. Morari, “A multiresolution
approximation method for fast explicit model predictive control,” IEEE
Trans. Autom. Control, vol. 56, no. 11, pp. 2530–2541, Nov. 2011.

[16] M. Kvasnica, J. Hledík, I. Rauová, and M. Fikar, “Complexity reduction
of explicit model predictive control via separation,” Automatica, vol. 49,
no. 6, pp. 1776–1781, 2013.

[17] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10,
pp. 1443–1451, Oct. 1995.

[18] T. Parisini, M. Sanguineti, and R. Zoppoli, “Nonlinear stabilization
by receding-horizon neural regulators,” Int. J. Control, vol. 70, no. 3,
pp. 341–362, Jan. 1998.

[19] X. Zhang, M. Bujarbaruah, and F. Borrelli, “Safe and near-optimal policy
learning for model predictive control using primal-dual neural networks,”
in Proc. Amer. Control Conf. (ACC), Jul. 2019, pp. 354–359.

[20] J. A. Paulson and A. Mesbah, “Approximate closed-loop robust model
predictive control with guaranteed stability and constraint satisfaction,”
IEEE Control Syst. Lett., vol. 4, no. 3, pp. 719–724, Jul. 2020.

[21] B. Karg and S. Lucia, “Stability and feasibility of neural network-based
controllers via output range analysis,” in Proc. 59th IEEE Conf. Decis.
Control (CDC), Dec. 2020, pp. 4947–4954.

[22] S. W. Chen, T. Wang, N. Atanasov, V. Kumar, and M. Morari, “Large
scale model predictive control with neural networks and primal active
sets,” Automatica, vol. 135, Jan. 2022, Art. no. 109947.

[23] R. Zoppoli, M. Sanguineti, G. Gnecco, and T. Parisini, Neural Approxi-
mations for Optimal Control and Decision. Cham, Switzerland: Springer,
2020.

[24] J. Nubert, J. Kohler, V. Berenz, F. Allgower, and S. Trimpe, “Safe and
fast tracking on a robot manipulator: Robust MPC and neural network
control,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 3050–3057,
Apr. 2020.

[25] P. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[26] D. O. B. Anderson and J. B. Moore, Optimal Control: Linear Quadratic
Methods. New York, NY, USA: Dover, 2018, pp. 53–54.

[27] K. H. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[28] H.-D. Chiang, M. W. Hirsch, and F. F. Wu, “Stability regions of
nonlinear autonomous dynamical systems,” IEEE Trans. Autom. Control,
vol. AC-33, no. 1, pp. 16–27, Jan. 1988.

[29] U. Topcu, A. Packard, and P. Seiler, “Local stability analysis using
simulations and sum-of-squares programming,” Automatica, vol. 44,
no. 10, pp. 2669–2675, Oct. 2008.

[30] B. K. Colbert and M. M. Peet, “Using trajectory measurements to
estimate the region of attraction of nonlinear systems,” in Proc. IEEE
Conf. Decis. Control (CDC), Dec. 2018, pp. 2341–2347.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[32] S. M. Richards, F. Berkenkamp, and A. Krause, “The Lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Proc. Conf. Robot Learn., 2018, pp. 466–476.

[33] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning Lyapunov functions for hybrid systems,” in Proc. 24th Int.
Conf. Hybrid Syst., Comput. Control, May 2021, pp. 1–11.

[34] F. Wu. (2021). Memory-Augmented Model Predictive Control: Numeri-
cal Experiments. [Online]. Available: https://github.com/fywu85/mampc

Fangyu Wu received the B.S. and M.S. degrees in
civil engineering from the University of Illinois at
Urbana–Champaign in 2015 and 2018, respectively,
and the M.Eng. degree in electrical engineering and
computer sciences from the University of California
at Berkeley in 2019, where he is currently pursuing
the Ph.D. degree in electrical engineering and com-
puter sciences.

His research interests include optimal control,
motion planning, and scalable scheduling for
multi-agent robotic systems

Guanhua Wang received the B.Eng. degree in
computer science from Southeast University, China,
in 2012, the M.Phil. degree in computer science
and engineering from The Hong Kong University of
Science and Technology in 2015, under the supervi-
sion of Prof. Lionel M. Ni, and the Ph.D. degree in
electrical engineering and computer sciences from
the University of California at Berkeley in 2022,
under the supervision of Prof. Ion Stoica.

He was a member of the RISELab, University of
California at Berkeley. His research interests include

the intersection of machine learning and systems, encompassing topics, such
as fast collective communication schemes for model synchronization, efficient
parallel model training, and real-time model serving.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

WU et al.: COMPOSING MPC WITH LQR AND NEURAL NETWORK 2101

Siyuan Zhuang received the B.Eng. degree in
computer science from the University of Science
and Technology, China, in 2018. He is currently
pursuing the Ph.D. degree in computer science
with the University of California at Berkeley,
under the supervision of Prof. Dawn Song and
Prof. Ion Stoica.

His research interests include machine learning
systems and distributed systems, exploring the intri-
cacies and challenges of these interrelated fields.

Kehan Wang received the B.A. degree in computer
science from the University of California at Berkeley
in 2021, where he is currently pursuing the M.S.
degree in electrical engineering and computer sci-
ences.

In 2020, he was with Microsoft, contributing to
the Microsoft teams platform. He was a Research
Assistant with the Berkeley Artificial Intelligence
Research Laboratory. His research interests include
computer vision and deep learning.

Alexander Keimer received the Diploma degree
in mathematics and the Ph.D. degree from
Friedrich-Alexander-Universität Erlangen-Nürnberg
in 2008 and 2014, respectively.

He was a Senior Researcher with the Institute
of Transportation Studies, University of California
at Berkeley. His research interests include nonlocal
conservation laws, optimal control with partial dif-
ferential equations, and traffic flow modeling.

Ion Stoica received the M.S. degree in electrical
engineering and computer science from the Poly-
technic University of Bucharest in 1989 and the
Ph.D. degree in electrical and computer engineering
from Carnegie Mellon University in 2000, under the
supervision of Hui Zhang.

In past, he worked with Apache Spark, Apache
Mesos, Tachyon, Chord DHT, and Dynamic Packet
State. In 2013, he co-founded Databricks, a startup
to commercialize technologies for big data process-
ing. In 2006, he co-founded Conviva, a startup to

commercialize technologies for large scale video distribution. He is currently
a Professor with the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley. His research interests include
cloud computing and networked computer systems.

Prof. Stoica is an ACM Fellow. He has received numerous awards, including
the SIGOPS Hall of Fame Award in 2015, the SIGCOMM Test of Time Award
in 2011, and the ACM Doctoral Dissertation Award in 2001.

Alexandre Bayen (Fellow, IEEE) received the Engi-
neering degree in applied mathematics from Ecole
Polytechnique, France, in 1998, and the M.S. and
Ph.D. degrees in aeronautics and astronautics from
Stanford University in 1999 and 2004, respectively.

He was a Visiting Researcher with the NASA
Ames Research Center from 2000 to 2003. From
January 2004 to December 2004, he worked as the
Research Director of the Autonomous Navigation
Laboratory, Laboratoire de Recherches Balistiques
et Aerodynamiques, Ministere de la Defense, Ver-

non, France, where he holds the Rank of Major. He has been with the
Faculty of University of California at Berkeley since 2005. He is currently
the Liao-Cho Professor of Engineering with the University of California
at Berkeley, a Professor of Electrical Engineering and Computer Science
and Civil and Environmental Engineering, the Director of the Institute of
Transportation Studies, and the Faculty Scientist of Mechanical Engineering
with the Lawrence Berkeley National Laboratory. He has authored two books
and more than 200 articles in peer-reviewed journals and conferences.

Authorized licensed use limited to: Cornell University Library. Downloaded on October 25,2024 at 16:29:20 UTC from IEEE Xplore. Restrictions apply.

