
Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone
Dataset and Consensus-Based Models

Fangyu Wu1,2, Dequan Wang2, Minjune Hwang2, Chenhui Hao3, Jiawei Lu2, Jiamu Zhang2, Christopher Chou2,
Trevor Darrell2, and Alexandre Bayen2

(a) jnc00.mp4 (b) jnc01.mp4 (c) jnc02.mp4 (d) jnc07.mp4 (e) jnc03.mp4, jnc04.mp4 (f) jnc05.mp4 (g) jnc06.mp4

(h) hwy00.mp4, hwy01.mp4, and hwy02.mp4

(i) hwy03.mp4, hwy04.mp4, and hwy05.mp4

(j) hwy06.mp4, hwy07.mp4, and hwy08.mp4

(k) hwy09.mp4, hwy10.mp4, and hwy11.mp4

Fig. 1: We propose a specialized dataset—Berkeley DeepDrive (B3D) dataset—and a modeling framework for studying
decentralized vehicle coordination. The dataset, open sourced at https://github.com/b3d-project/b3d, captures decentralized
vehicle coordination on understructured roads. The modeling framework provide a novel perspective to distributed motion
planning over networks.

Abstract— A significant portion of roads, especially in densely
populated developing countries, lacks explicitly defined right-
of-way rules. These understructured roads pose substantial
challenges for motion planning in autonomous vehicles, where
efficient and safe navigation depends on understanding how
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human drivers coordinate to avoid collisions in decentralized
settings. This coordination, often referred to as “social driving
etiquette,” remains underexplored due to a lack of empirical
data and suitable modeling frameworks. In this paper, we
introduce a novel dataset and modeling framework tailored
to study motion planning in understructured environments.
The dataset comprises 20 aerial videos of representative un-
derstructured road scenarios, an image dataset for training
vehicle detection models, and a development kit for estimating
vehicle trajectories. We show that a consensus-based modeling



approach can explain the emergence of priority orders observed
in the dataset, supporting robust, real-time collision avoidance
planning.

I. INTRODUCTION

Navigation in built environments—such as driving, cy-
cling, and walking—is a crucial area of research in au-
tonomous driving and human-robot interaction. The de-
velopment of autonomous agents capable of operating in
structured environments is a well-established field with roots
extending back to the early days of control theory and
robotics. In the context of transportation, researchers have
extensively studied navigation in structured environments,
such as free-flow highways and signalized urban streets.
However, compared to navigation on structured roads, mo-
tion planning in understructured road environments—roads
without explicitly defined right-of-way regulations—is much
less explored due to the lack of empirical data and the
complexity of the problem.

The first essential ingredient for understanding understruc-
tured navigation is empirical data. To this end, camera videos
are particularly effective because 1 ) they capture rich dynam-
ics on roads at a relatively low cost, 2 ) they allow for quan-
titative assessment through direct inspection, and 3 ) they
enables qualitative analysis through modern computer vision.
Despite extensive past research, most existing video datasets
focus solely on driving behaviors in structured environments.
Behaviors in understructured road environments—such as
crowded highways with frequent merges and unsignalized
intersections—have rarely been surveyed. The scarcity of
data for this problem undoubtedly hinders understanding of
navigation in such environments.

To bridge this gap in empirical data, we propose the
Berkeley DeepDrive Drone (B3D) dataset. This inertial-
framed dataset records rich dynamics of driving behaviors
in understructured road environments, including unsignalized
intersections, unsignalized roundabouts, highways with colli-
sions, highways with stop-and-go waves, and highways with
merging bottlenecks, as shown in Figure 1. To the best of our
knowledge, it is the first drone dataset to date that extensively
covers understructured driving behaviors.

The other piece of the puzzle is a suitable modeling
paradigm. The conventional control and planning architecture
in an autonomous vehicle consists of four layers of abstrac-
tion, from top to bottom: 1 ) routing, 2 ) behavioral decision-
making, 3 ) motion planning, and 4 ) vehicle control [14].
Particularly in the second behavioral layer, a prediction mod-
ule is often employed to forecast the motion of surrounding
vehicles, around which the motion planning layer then plans
to avoid collisions.

This classical predict-then-plan paradigm, while effec-
tive for driving in structured environments, is inadequate
in understructured road environments. For instance, at an
unsignalized intersection, drivers negotiate the right-of-way
dynamically: when two conflicting vehicles approach the
intersection at similar times, the one perceived as more ag-
gressive often “wins” the priority of passage. This negotiative

process fundamentally deviates from the predict-then-plan
paradigm.

Modeling such a negotiative process is fundamental to
autonomous driving. Given the vast population of drivers
in developing countries, where roads are often unsignalized,
understanding how humans operate in these environments
is crucial for enhancing the generalizability of autonomous
driving technologies. This knowledge enables autonomous
vehicles to mimic human drivers, facilitating navigation
through understructured road environments. Furthermore, it
may inspire innovative designs of decentralized motion plan-
ning algorithms, applicable not only to autonomous vehicles
but also to other forms of mobile robots.

To this end, we propose a novel planning approach for the
behavioral decision-making layer, replacing the traditional
predict-then-plan approach with a negotiate-then-commit ap-
proach. Central to this new planning paradigm is a consensus
model that implicitly arbitrates the priority of agents with
conflicting paths. This consensus model is founded on the
principle of least action, a universal law observed in nature.

In summary, we list the main contributions of our work
below.

• We release the B3D dataset, which captures rich dy-
namics of driving behaviors on understructured roads.

• We propose a consensus-based modeling framework
based on the principle of least action.

• We evaluate our framework through data-driven vali-
dation and integrative simulation.

II. RELATED WORKS

Existing driving datasets can be classified into either body-
framed dataset or inertial-framed dataset. The body-framed
datasets have cameras placed on the traffic participants,
e.g., on top a survey vehicle, to observe the movements
of the surrounding traffic. The inertial-framed datasets have
cameras installed at some overhead positions above some
roads of interest to observe all road occupants within its
field of view.

Body-framed datasets are useful to study behaviors of the
surrounding traffic participants with respect to the host. It is
arguably the most commonly used method for autonomous
driving perception research. Many well-known datasets fall
within this category, such as the KITTI dataset [7], the
Oxford RoboCar dataset [13], the Cityscapes dataset [5], the
Waymo Open dataset [21], and the Waymo Open Motion
dataset [6]. Nevertheless, the body-framed placement makes
it difficult to study persistent traffic patterns within a fixed
spatial range. Moreover, placing the sensors on a low-profile
moving object also results in undesirable occlusion.

Inertial-framed datasets are better suited to observe traffic
within a fixed spatial range. By construction, the inertial-
framed placement makes it very easy to estimate the recorded
vehicle and human movements with respect to the ground.
Because the cameras are often placed on a vantage point,
occlusion is also not as problematic. In this category, we also
find many seminal datasets, including the NGSIM dataset [1],



the ARED dataset [26], the Stanford Drone dataset [17], the
highD dataset [10], and the INTERACTION dataset [29].

Existing motion planning literature for autonomous driv-
ing can be broadly divided into three major categories
of methods: prediction-based approaches, dynamics-based
approaches, and end-to-end approaches. Prediction-based
planning deals with dynamically changing environments by
predicting future states of the environment and planning
based on those static predictions. In contrast, dynamics-based
planning maintains a model of the world and plans inter-
actively based on that model. Lastly, unlike the above two
methods, end-to-end planning replaces conventional modular
motion planning stack with a unified neural network model.

Prediction-based approaches are suitable for planning in
environments where future states can be predicted with
high confidence. The predictability of such environments
is characterized by the degree of confidence in forecasting
the system’s trajectory over a suitable time horizon. For
navigation in reasonably predictable environments, robust
methods have been developed for planning around agents
whose motions have bounded uncertainty [8], follow known
probability distributions with chance constraints [12], [25], or
are amenable to be described within a distributionally robust
framework [15], [19].

Dynamics-based approaches are particularly suitable for
highly coupled environments where the future state depends
on the ego agent’s current actions. Within these approaches,
consensus-based methods form a special class where all
agents agree on a common navigation logic. Such mod-
els are widely applied in driver and pedestrian behavior
modeling [9], [23], air traffic control [22], [4], and swarm
robotics [16], [24]. In contrast, non-consensus-based methods
allow the ego agent and environmental agents to operate on
different models, such as [18].

Recently, end-to-end approaches have gained significant
attention in the community, driven by advances in machine
learning, upgrade in computing infrastructure, and the avail-
ability of large-scale driving datasets. For example, viable
driving paths have been planned directly from LiDAR, GPS,
IMU, and navigation map overlays [2], or from on-vehicle
cameras and past vehicle states [28]. The pros and cons
of these approaches are clear: while they offer significant
potential and scalability with large datasets and computing
power, it lacks theoretical tractability and safety guarantees.
For a comprehensive overview of the literature in this area,
please refer to [3] and the references therein.

III. BERKELEY DEEPDRIVE DRONE DATASET

To study decentralized vehicle coordination in under-
structured environments, we introduce the Berkeley Deep-
Drive Drone (B3D) dataset, available at https://github.
com/b3d-project/b3d. The dataset was recorded with a
DJI Mavic 2 Pro quadcopter between December 11 and
December 21 of 2019 in China. It consists of 20 post-
processed aerial drone videos, 16002 annotated images, and
a development kit for estimating vehicle trajectories from the

videos. The total size of the dateset is about 86.3 GB. We
briefly describe the components of the dataset below.

A. Aerial Videos

Among the 20 processed aerial videos, eight were recorded
on top of junctions and 12 on top of highways. An overview
of the types of the roads covered in the videos is illustrated in
Figure 1. Scenarios recorded in the video can be classified
into the following six categories: 1 ) unsignalized intersec-
tions, 2 ) unsignalized roundabouts, 3 ) tailgating accidents,
4 ) stop-and-go waves, 5 ) roadwork-induced merging, and 6 )
ramp-induced merging.

Unsignalized intersections can be found in videos
jnc00 .mp4, jnc01 .mp4, jnc02 .mp4, and jnc07 .mp4. Videos
jnc00 .mp4 and jnc01 .mp4 are two variants of three-way
intersections, as shown in Figure 1a and Figure 1b, respec-
tively. Videos jnc02 .mp4 and jnc07 .mp4 are two variants of
four-way intersections, as shown in Figure 1c and Figure 1d,
respectively.

Unsignalized roundabouts are captured in jnc03 .mp4,
jnc04 .mp4, jnc05 .mp4, and jnc06 .mp4. Videos jnc03 .mp4
and jnc04 .mp4 are two recordings of a five-way roundabout,
as shown in Figure 1e. Videos jnc05 .mp4 and jnc06 .mp4 are
two variants of four-way roundabouts, as shown in Figure 1f
and Figure 1g, respectively. Compared to video jnc03 .mp4,
video jnc04 .mp4 has slightly more traffic.

The tailgating accidents consist of two collision events,
first in hwy00.mp4 and then in hwy01.mp4. At 00:45 of
hwy00.mp4, we observe the first accident near the left margin
of the frame, as shown in Figure 3a. At 13:10 of hwy01.mp4,
we find another traffic accident in the middle of the frame, as
shown in Figure 3b. Video hwy02.mp4 captures the resulting
congested traffic induced by the second incident. The the
timestamps of the collision events are visualized in Figure 4.

First collision

(a) First collision in hwy00.mp4
Second collision

(b) Second collision in hwy01.mp4

Fig. 3: Tailgating collisions in hwy00.mp4 and hwy01.mp4.
The collided vehicles are circled in black. The first accident
involves at least two vehicles, while the second incident
involves four vehicles.

Stop-and-go waves are recorded in hwy04.mp4 and
hwy05.mp4. The first stop-and-go wave forms between 02:30
and 05:07 of hwy04.mp4. The second stop-and-go wave
emerges between 06:06 and 08:10 of hwy04.mp4. The third
stop-and-go wave is observed between 10:26 and 12:25 of
hwy04.mp4. The fourth wave happens between 00:00 and
01:33 of hwy05.mp4. The last visible wave occurs between
05:19 and 06:07 of hwy05.mp4. For comparison, we provide
video hwy03.mp4 as a free-flow baseline. The formation and
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Fig. 4: Timeline of the tailgating accidents. Green indi-
cates regular traffic. Red indicates congestion caused by a
collision. Light red indicates the induced congestion starts
dissipating.

dissipation events of the stop-and-go waves are visualized in
Figure 5.
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Fig. 5: Timeline of the stop-and-go waves. Green indicates
regular traffic. Red indicates congestion caused by a strong
stop-and-go wave. Light red indicates congestion caused by
a weak stop-and-go wave.

Roadwork-induced merging is recorded in hwy06.mp4,
hwy07.mp4, and hwy08.mp4. The topology of the scenario
is a four-lane-to-two-lane bottleneck, as shown in Figure 1j.
Persistent congestion is observed before the merge point,
while free-flow traffic is formed after the merge point.

Ramp-induced merging is recorded in hwy09.mp4,
hwy10.mp4, and hwy11.mp4. The topology of the ramp is
shown in Figure 1k, where a three-lane on-ramp is merging
into a four-lane congested highway. The traffic stays con-
gested before and after the merge point.

B. Annotated Images

In addition to the videos, we build an image dataset, which
can be used to train vehicle detection models for trajectory
estimation. The dataset consists of 16002 annotated images,
80% of which is split for training, 10% of which for
validation, and 10% of which for testing.

Using annotation tool CVAT [20], a total of 135303 axially
aligned bounding boxes (AABB) are annotated for junction
images and a total of 129939 AABBs created for highway
images. Note that the annotations contain only one object
class, that is, the vehicle class. We do not distinguish large
vehicles, such as buses and trucks, from small vehicles, such
as sedans and SUVs.

C. Development Kit

Besides, we also provide a development kit consisting of
three example scripts: train .py, test .py, and mask.py. For
reproducibility, we encapsulate the development environment
in a Docker image. The image can be directly built from the
provided Dockerfile in the dataset repository.

The script train .py is used to show how the annotated
image data may be used to train a neural network model for
vehicle detection. In this script, we use the object detection
library Detectron2 [27] to train a RetinaNet model [11] for
detecting locations of vehicles in an input image.

The script test .py applies the trained model, trained
via the train .py script, to an input image. This script is
intended to serve as an example for post-training evaluation
and inference. For convenience, we provide an optional pre-
trained model, which can be used directly for inference. This
way, users can directly use a working detection model to
estimate vehicle trajectories without having to go through
the computationally expensive training step locally.

Finally, the script mask.py crops an image according to a
pre-defined polygon mask. The script intends to help users to
focus on the only relevant part of the scene, where relevance
is defined by the user via CVAT. To crop a video, one only
needs to define a polygonal mask for one frame of a video
and then apply masking to every frame of the video.

IV. CONSENSUS-BASED MODELS

To describe the decentralized vehicle coordination ob-
served in the B3D dataset, we propose a modeling framework
based on the idea of consensus.

We consider a setup with N agents and M pairs of
intersecting paths. Denote the road network by G = (V,E),
where V represents the set of vertices and E the set of edges.
A path p is defined as a finite sequence of directed edges
connecting a set of unique vertices.

Let s ∈ R≥0 represent the traveled distance along path p.
Define the state of an agent as x := [s ṡ]⊤. Assuming the
agent begins its path at t0 and completes it at tf , a traversal
policy π : R × R2 → R2 is a function defined as ẋ(t) =
π(t, x(t)) over t ∈ [t0, tf ]. The trajectory of an agent is
defined as the evolution of an agent’s state over time, i.e.,
X = {x(t) | ∀t ∈ [t0, tf ]}.

Two traversal policies π1 : [t0, tf ] → R2 and π2 :
[t0, tf ] → R2 are considered collision-free if the resulting
trajectories x1(t) and x2(t) remain sufficiently separated
according to some distance function d : R2×R2 → R≥0 for
all t ∈ [t0, tf ]. Specifically, we require that d(x1(t), x2(t)) ≥
ϵ for a certain separation margin ϵ > 0 and for all t.

With the preceding definition, we are now equipped to
present the two-agent collision avoidance problem as fol-
lows:

Problem 1: (Two-Agent Collision Avoidance Problem)
Consider two agents of paths p1 and p2 intersecting at
either one vertice or a sub-path. Given the initial conditions
(t0, x0|1) and (t0, x0|2), find a pair of traversal policies,
π1 and π2, such that they establish a priority order at the
conflicting location with finite arrival times tf |1 and tf |2.



The above two-agent problem is an special case of the
more general N -agent problem, as formally stated below:

Problem 2: (N -Agent Collision Avoidance Problem)
Consider N agents of paths P = {p1, p2, . . . , pN} inter-
secting at either one vertice or a sub-path. Given the initial
conditions (t0, x0|i),∀i = 1, . . . , N , find some traversal poli-
cies π1, π2, . . . , πN , such that they solve the corresponding
two-agent collision avoidance problem for each unique pair
of paths in P .

A. Collision Avoidance Consensus

A consensus model, informally, refers to a control policy
that, when deploy to individual agents, steers each agent
towards consensus on certain critical quantities despite initial
disagreements. For Problem 1 and Problem 2, the critical
quantity of interest here is the priority order at all conflicting
locations. In following paragraphs, we present a general
framework on consensus-based conflict resolution.

Without loss of generality, we start by first considering
Problem 1. Label the two agents as Agent 1 and Agent
2. Define a binary indicator ri ∈ {0, 1} at the conflicting
location for agent i ∈ {1, 2} such that ri = 1 when Agent
i has the priority and ri = 0 otherwise. For the two-
agent problem, a priority order is established if and only
if r1 + r2 = 1.

Consequently, we assume a consensus model for collision
avoidance σ : R × R2 × R2 → {0, 1} to take the following
form:

r = σ(t, x(t), x̄(t)), (1)

where t is the time of evaluation and x(t), x̄(t) the states
of the ego agent and the competing agent, respectively.
Clearly, a valid consensus model satisfies σ(t, x1(t), x2(t))+
σ(t, x2(t), x1(t)) = 1, where x1(t), x2(t) are the states of
Agent 1 and Agent 2.

Now consider the general N -agent version in Problem 2.
By similar argument, we must have σ(t, xp(t), xq(t)) +
σ(t, xq(t), xp(t)) = 1, where xp(t), xq(t) are the states of
any unique pair of Agent p and Agent q selected from the
N agents.

Altternatively, we can define ri ∈ {0, 1, . . . , N −1} at the
conflicting location for Agent i ∈ {1, . . . , N} such that the
set R = {ri : ∀i = 1, . . . , N} is a permutation of the ordered
set {0, 1, . . . , N − 1}. The priority in which agent i clears
the conflicting location is denoted by ri, i.e., if ri > rj , then
Agent i clears the conflicting location earlier than Agent j.

Next, we propose a specific form of consensus model
based on the principle of least action.

B. Least-Action Consensus

To develop a least-action consensus model, one must first
quantify the cost of an action associated with each conflict
resolution scheme. To this end, a common approach is to
measure the cost of an action through a cost functional J on
the trajectories resulting from a given priority order.

For example, we can define a L2-norm induced cost
functional. Given a priority order R = {ri : ∀i = 1, . . . , N}
and initial conditions I = {(t0, x0|i) : ∀i = 1, . . . , N}

for the N agents respectively, we can find a set of valid
traversal policies ΠR,I = {πi : ∀i = 1, . . . , N}. Let
T ∗
R,I = {[t−i , t

+
i ] : i = 1, . . . , N} be the set of time

intervals, during which the respective agents interact with
their neighboring agents. With R, I, T ∗, one can therefore
define the cost functional J as follows:

J(R, I,ΠR,I , T
∗
R,I) =

N∑
i=1

(∫ t+i

t−i

π2
i (t, xi(t)) dt

) 1
2

, (2)

for [t−i , t
+
i ] ∈ T ∗

R,I , πi ∈ ΠR,I for all i = 1, . . . , N .
In Problem 1, if one can associate a cost functional with

each valid choice of traversal policies π1, π2 and initial con-
ditions (t0, x0|1) and (t0, x0|2), then a least-action consensus
model favors the choice associated with the least cost. With
the cost functional J , this leads to solving the following
optimization problem:

R∗ = arg min
R

J(R, I,ΠR,I , T
∗
R,I)

s.t. r1 + r2 = 1,

r1, r2 ∈ {0, 1}.

(3)

Let σ(t0, x0|1, x0|2) := r∗1 and σ(t0, x0|2, x0|1) := r∗2 .
Clearly, if the optimization (3) admits an unique solution,
the resulting consensus model ensures zero collision.

Generalizing to Problem 2, we find the total number
of possible orderings extends to N !. Using the same cost
functional, the consensus model enumerates the costs for
each possible orderings and select the one with the least
amount of costs. , as defined below:

R∗ = arg min
R

J(R, I,ΠR,I , T
∗
R,I)

s.t. R ∈ S({0, 1, . . . , N − 1}),
(4)

where S({0, 1, . . . , N − 1}) is the set of all permuations of
{0, 1, . . . , N − 1}. Let σ(t0, x0|i, x0|j) := 1(ri > rj) for all
i = 1, . . . , N . As expected, optimization (3) is a special
case of optimization (3), where N = 2. Like before, if
the optimization (4) admits an unique solution, the resulting
consensus leads to zero collision.

Remark 1: The time interval [t−i , t
+
i ] marks the begining

and the end of Agent i’s interaction with other conflicting
agents. When setting the time interval, one can choose t−i
as a few seconds before entering the conflicting location and
t+i as the time of exiting the conflicting location.

Remark 2: Note the disparity in costs among candidate
choices can serve as a measure of confidence. The more pro-
nounced the difference in cost between the two options, the
more robust the consensus will be. Moreover, a slack variable
ξ may be incorporated to model the internal defensiveness
or aggressiveness of the agents. For instance, consider two
priority plans with respective costs J1 and J2. Once can
introduce a slack variable ξ such that the plan with cost J1
is deemed favorable if and only if J1 < J2 + ξ, and vice
versa. A negative ξ represents a defensive agent, while a
positive ξ indicates an aggressive agent.

Remark 3: In the events where optimization (3) or (4)
does not admit an unique solution, it becomes necessary



to implement additional logic for tie-breaking. In pactice,
this may entail that all conflicting vehicles simultaneously
coming to a stop, thereafter proceeding based on established
social norms or sign language cues.

V. NUMERICAL SIMULATION

In this section, we evaluate our least-action consensus
model by conducting tests using 1 ) an sequence of two-agent
validation scenarios with ground truth provided by the B3D
dataset and 2 ) an integrative N -agent simulation scenario.

A. Two-Agent Validation

The two-agent scenarios are extracted from a specific
unsignalized intersection as recorded in video “jnc07.mp4”
shown in Figure 1d. The primary objective is to determine
whether our least-action consensus model recovers the order
of proceeding observed in the video. We manually selected
six relatively isolated two-agent interactions from this video
to apply the least-action consensus model.

Results from the two-agent validation tests are presented
in Table I. As indicated in the table, the model successfully
recovers naturalistic conflict resolution under all initial con-
ditions.

TABLE I: Results of the Two-Agent Validation
Entry Speeds (m/s)* Distances to Conflict (m)* True Priority Order Modelled Priority Order

(0.01, 3.57) (5.52, 21.25) Westbound First Westbound First
(0.01, 5.32) (5.37, 20.04) Westbound First Westbound First
(0.02, 3.24) (5.87, 21.14) Westbound First Westbound First
(0.16, 2.65) (5.82, 21.71) Westbound First Westbound First
(0.04, 1.79) (7.33, 21.97) Westbound First Westbound First
(0.41, 3.18) (4.35, 21.19) Southbound First Southbound First

* Data on entry speeds and distance to conflict are arranged as (southbound, westbound)

B. N -Agent Simulation

To evaluate the integrative performance of the model, we
constructed a N -agent cross-intersection simulation involv-
ing southbound and westbound traffic flows as shown in
Figure 6. The goal of this evaluation is to check if our
least-action model can be deployed in an integrative sim-
ulation without collision. Each arm of the cross-intersection
is symmetrically configured to be 20 meters in length.
The simulation is designed to run for a total duration of
approximately 300 seconds, during which inbound traffic is
randomly generated based on a Poisson distribution with an
average arrival rate of 900 vehicles per hour. The initial
position of each vehicle is set at the respective intersection
entrances, and the initial velocity is sampled from a normal
distribution with a mean of 3 m/s and a standard deviation
of 1 m/s, truncated between 0 and 4 m/s.

The results of the N -agent simulation tests are depicted in
Figure 7. The figure features two timelines: the top timeline
visualizes the entry times of incoming vehicles, while the
bottom timeline displays their crossing times. Red data
points represent vehicles approaching from the southbound
direction, and blue data points from the westbound. Although
vehicles enter the intersection randomly, as per the simulation
setup, they cross the conflict point in a distinct batch pattern.
Each direction alternates in crossing the conflict point in

Fig. 6: The N -agent simulation scenario. Red circles indicate
the origins of traffic while black circles denote the respective
destinations. Green rectangles, labeled with numbers, repre-
sent the vehicles as they pass through the intersection.

batches of queues. This qualitative behavior aligns with
observations from the B3D dataset.

Fig. 7: Results of the N -agent simulation. Each red point
represents a southbound vehicle, while each blue point
represents a westbound vehicle.

VI. DISCUSSION

The preliminary results from the numerical simulations
suggest that the consensus-based approach is a viable frame-
work for decentralized conflict resolution in understructured
road environments. Despite these promising findings, several
critical aspects of this research remain unexplored. We
identify and discuss two particularly salient open questions:
theoretical convergence analysis and further empirical val-
idation. Detailed discussions of these issues are presented
below.

First and foremost, an interesting theoretical challenge
is to show the convergence of consensus in the presence
of disturbances. Although we have empirically shown that
this consensus approach to decentralized conflict resolution
accurately describes how human drivers negotiate right-of-
way in real-time, it has yet to be proven under which
conditions the method will converge to a consistent priority
order in a distributed setting.

Beyond theoretical analysis, it is crucial to evaluate the
model’s performance through more complex empirical test-
ing. For instance, rather than limiting tests to two-agent
conflict resolution, the model could be evaluated against
N -agent interactions involving diverse conflict types and
demand profiles. Additionally, conducting tests of the con-
sensus model, in a Turing test-like manner, is also interesting.
A successful model should operate in an understructured
environment in such a way that it is indistinguishable from
human drivers by a human observer.



REFERENCES

[1] United States Federal Highway Administration. Next generation
simulation (ngsim) vehicle trajectories and supporting data, 2016.

[2] Luca Caltagirone, Mauro Bellone, Lennart Svensson, and Mattias
Wahde. Lidar-based driving path generation using fully convolutional
neural networks. In 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2017.

[3] Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas
Geiger, and Hongyang Li. End-to-end autonomous driving: Challenges
and frontiers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[4] Hong-Cheol Choi and Inseok Hwang. Data-driven trajectory-based
consensus approach to traffic management for manned and unmanned
aviation. In AIAA SCITECH 2024 Forum, page 0537, 2024.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. The cityscapes dataset for semantic urban scene
understanding. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3213–3223, 2016.

[6] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang
Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles Qi, Yin
Zhou, Zoey Yang, Aurelien Chouard, Pei Sun, Jiquan Ngiam, Vijay
Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir
Anguelov. Large scale interactive motion forecasting for autonomous
driving: The waymo open motion dataset. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 9710–
9719, 2021.

[7] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[8] Andrew Gray, Yiqi Gao, J Karl Hedrick, and Francesco Borrelli. Ro-
bust predictive control for semi-autonomous vehicles with an uncertain
driver model. In 2013 IEEE intelligent vehicles symposium (IV), pages
208–213. IEEE, 2013.

[9] Dirk Helbing and Peter Molnar. Social force model for pedestrian
dynamics. Physical review E, 51(5):4282, 1995.

[10] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein.
The highd dataset: A drone dataset of naturalistic vehicle trajectories
on german highways for validation of highly automated driving
systems. In International Conference on Intelligent Transportation
Systems, pages 2118–2125, 2018.

[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár. Focal loss for dense object detection. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2980–2988,
2017.

[12] Brandon Luders, Mangal Kothari, and Jonathan How. Chance con-
strained rrt for probabilistic robustness to environmental uncertainty.
In AIAA guidance, navigation, and control conference, page 8160,
2010.

[13] Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1
year, 1000km: The oxford robotcar dataset. The International Journal
of Robotics Research, 36(1):3–15, 2017.
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